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Abstract

We propose two novel dynamic programming (DP) meth-
ods that solve the the approximate bounded and unbounded
global alignment problems for biological sequences. Our
first method solves the bounded alignment problem. It com-
putes the distribution of the edit distance between the re-
maining suffixes. For a given boundk and approximation
p %, it uses this distribution to prune the entries of the DP
matrix that will lead to alignments with more thank edit op-
erations with more thanp% probability. Our second method
addresses the unbounded global alignment problem. For
each entry of the distance matrix, it dynamically computes
an upper bound to the distance between the unaligned suf-
fixes. This bound, along with the lower bound as computed
for the bounded case, is then used to eliminate the entries of
the distance matrix. According to our experimental results,
our methods are up to three times faster than the compet-
ing methods for the bounded alignment and up to two times
faster for the unbounded alignment, even with 100 % ap-
proximation. Our methods use only 17-68 % of the space
used by the next best competitor.

1 Introduction

Comparing two sequences is one of the most fundamen-
tal problems in bioinformatics. Sequence search, multiple
sequence alignment, shotgun sequence assembly, and phy-
logenetic analysis are only a few examples of many bioin-
formatics areas that require comparison of sequences.

One of the most commonly used criteria for defining the
distance between two sequences is theEdit Distance. The
edit distance between two sequencesx andy, ED(x, y), is
defined as the minimum number of edit operations (inser-
tion, deletion or replacement) to transformx into y.

In this paper we focus on two fundamental sequence
alignment problems:

Problem 1 (Bounded) Given two sequencesx andy, and a
distance thresholdk, find the optimal global alignment ofx
andy with at mostk edit operations.

Problem 2 (Unbounded) Given two sequencesx and y,
find the optimal global alignment ofx andy.

Existing methods usually fall into one of the following
two classes: 1) Tools that are too slow and require too much
resources (e.g., extensive memory requirements), but have
optimal quality. 2) Tools that are reasonably fast and use
reasonable amount of resources, but provide almost no qual-
ity guarantees. Needleman-Wunsch method (N-W) [13] and
BLAST [1] are examples to the first and the second class re-
spectively.

In this paper, we develop a model that allows the user
to trade-off efficiency with quality by appropriate choice of
the approximation percentage, an input parameter. We call
our methodsLookaheadsince we estimate the distance of
the unaligned suffixes, before actually evaluating their edit
distance. The algorithm takes an approximation percent-
agep ∈ [0, 100] as input. Similar to the N-W method, we
fill out a distance matrix. As each value in this matrix is
computed, we calculate the distance distribution of the un-
aligned suffixes. This is done by maintaining a summary
of the suffixes, with the help of frequency vectors [10]. We
keep an entry of the distance matrix if the best traceback
path that passes from that entry incurs at mostk edit op-
erations with more than(100 − p) % probability. We call
this ap % approximationfor bounded alignment. We also
show that eliminating sets of entries in the distance matrix
enables pruning of entire rows or columns of this matrix
without any computation. Our method for the unbounded
problem also computes an upper bound,max, to the edit
distance for each entry ofM . We keep an entry of the dis-
tance matrix if the best traceback path that passes from that
entry incurs at mostmax edit operations with more than
(100 − p) % probability. We call this ap % approximation
for unbounded alignment. Our experiments show that our
methods use 17 to 68 % of the space and run up to three
times faster compared to the next best competitor even with
100 % approximation. The performance and memory usage
gap between Lookahead and existing methods increase even
further as the approximation percentage drops.
We can summarize the contributions of this paper as fol-
lows:
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1) We propose new approximate solutions to both
bounded and unbounded global alignment, that allow the
user to choose the quality, by an appropriate choice of ap-
proximation percentage,p..

2) Most of the existing methods rely on theoretical anal-
ysis and lack experimental validation. We provide detailed
experimental analysis on real data.

3) To our knowledge, this is the first paper that profiles
the detailed microarchitecture characteristics of the existing
algorithms.

The rest of the paper is organized as follows. In Sec-
tion 2, we give background information. In Sections 3
and 4, we discuss our methods for bounded and unbounded
global alignment. In Section 5 we present experimental re-
sults. We end with a brief discussion in Section 6.

2 Background

In 2.1, we review previous work on this problem. In 2.2,
we define notions of frequency space, as used in this paper.

2.1 Background on sequence alignment

N-W method solves the unbounded alignment prob-
lem using dynamic programming as follows. Letx =
x1x2 · · ·xn and y = y1y2 · · · ym be two sequences with
n andm letters respectively. An(n+1)× (m+1) distance
matrix M is filled recursively by considering the three pre-
decessors of each entry of the matrix:

Mi,0 = i, M0,j = j, ∀i, j, 0 ≤ i ≤ n, 0 ≤ j ≤ m,

Mi,j = min

 Mi−1,j + 1,
Mi,j−1 + 1,
Mi−1,j−1 + v(xi, yj)

for 0 < i, j, wherev(xi, yj) = 1 if xi 6= yj , v(xi, yj) = 0,
otherwise.

The traceback path fromMn,m to M0,0 defines the opti-
mal alignment ofx andy. The bounded problem can also be
solved using the N-W algorithm. Abandedversion of the
N-W method is used by filling only the entriesMi,j , where
|i − j| ≤ k. The unbounded DP usesO(nm) space and
time. The space and time complexity of the bounded ver-
sion isO((n+m)k). In many applications,k = O(n+m),
thus, the complexity of the bounded version can also be as
large asO(nm). The quadratic time and space complexity
makes the N-W algorithm impractical as the problem size
gets larger. Another problem with the N-W method is that
as the sequences get longer, each row (or column) of the DP
matrix gets too large to fit in available cache. As a result of
that each DP iteration causes cache misses.

Various methods have been developed to improve N-W
by reducing the search space in the DP matrix. Ukkonen
considered the banded alignment problem [17]. As the DP
matrix is computed, his method approximates the distance

of unaligned suffixes as the difference of their lengths. Let
d′ be the approximated value for a DP matrix entry. If
the distance value of that entry in the DP matrix exceeds
k − d′, then that entry is eliminated from further compari-
son. This method has two main problems. First, it uses a
very loose bound to avoid false dismissals. Second, it does
not work for the unbounded alignment problem. Hadlock’s
method [8] is similar to Ukkonen’s. Fickett considered the
unbounded alignment problem [5]. He starts with a small
distance boundk and computes the DP matrix entries within
this bound. If no solution is found within this bound, he iter-
atively increases the value ofk and recomputes the distance
matrix. This method has two problems. First, although, it
computes only the non-redundant DP entries, the entries in
the periphery are usually computed twice (once in each of
the two consecutive iterations). Second, it has a poor data
locality since the DP matrix is computed in an irregular or-
der (i.e., order depends on the distribution of the distances
in the DP matrix). Similar to Hadlock, K-T algorithm [15]
explores the DP matrix greedily. This method has the same
disadvantages as Fickett’s and Hadlock’s method. It also
fails to find all the paths that lead to the best alignment since
only the path closest to the diagonal is considered.

Although these above-mentioned methods reduce the
search space, they are not commonly used in existing se-
quence analysis tools. This is because, the additional data
structures they need for book keeping are usually larger than
the space saved. Furthermore, the reduction in running time
due to pruning the search space usually do not compensate
the time spent for pruning these entries.

A number of methods have been developed for faster pat-
tern searching [2, 12, 18]. However, these methods work
well only for very short sequences with significant similar-
ity. For a given range query or a nearest neighbor query,
early pruning methods such as the use ofk-grams [7], in-
dexing the edit distance based on reference points [6, 14] or
index structures on some feature vectors of sequences [10]
have been proposed to avoid redundant comparison of se-
quences from a database of sequences. However, these
methods only produce a candidate set of sequences from
a database. Once the candidate set is generated, these meth-
ods still need to align the query sequence with the candidate
sequences. Existing database search methods do not re-
duce the alignment cost at this step. Several heuristic meth-
ods, such as MUMmer [4] and AVID [3], have been devel-
oped for fast global alignment of large sequences. However,
these methods do not provide any quality guarantees.

2.2 Background on frequency space

Let x be a sequence from the alphabetΓ =
{α1, α2, · · · , αγ}. Let ni be the number of occurrences of
the characterαi in x for 1 ≤ i ≤ γ. The frequency vec-
tor of a sequencex is computed as the number of occur-
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rences of each of the letters [10]. Thefrequency distance,
FD(f(x), f(y)), between the frequency vectorsf(x) and
f(y) of two sequencesx andy is defined as the minimum
number of increment and decrement operations needed to
transformf(x) into f(y). Unlike edit distance, frequency
distance can be computed inO(γ) time as follows. First
f(x) − f(y) is computed. FD(f(x), f(y)) is computed as
the larger of the number of increments and decrements. An
important property of the frequency distance is that it is a
lower bound to the edit distance, i.e., FD(f(x), f(y)) ≤
ED(x, y),∀x, y.

Each frequency vectorv defines an equivalence class,
which is defined as the set of all sequences whose frequency
vectors are equal tov. Letu andv be two frequency vectors
for sequences of lengthw. Let U andV be their equiva-
lence classes respectively. It is shown that the distance dis-
tribution between the sequences inU andV can be approx-
imated using a normal distributionN(µ, σ2) [11], where

µ = w −
∑γ

i=1
ui·vi

|q| , and

σ2 ≈
∑γ

i=1(
ui·vi

w · (1 + (ui−1)(vi−1)
w−1 − ui·vi

w )).

3 Approximate bounded alignment

We develop a new model that lets the user choose the
quality of the bounded alignment. The user picks a bound
k, and an approximation percentagep, where0 ≤ p ≤ 100.
Our method eliminates the entries that will lead to align-
ments with more thank edit operations with more thanp%
probability. It then selects the best alignments from the re-
maining alignments.

Similar to N-W, we fill a distance matrixM . Letd be the
edit distance obtained for an entry ofM at an intermediate
step of the alignment. Ifk < d, then this entry can not
be a part of the solution since the edit distance is greater
than the bound. Ford ≤ k, we calculate the probability
that it will be a part of a solution as follows. We compute
the frequency vectors,u andv, of the unaligned suffixes at
intermediate steps of the alignment. We then calculate the
distance distributionN(µ, σ2) betweenu andv. Let d̄ be a
real number such that∫ ∞

d̄

f(x) dx = p/100,

wheref(x) is the probability density function for the nor-
mal distribution with meanµ and varianceσ2. This means
that there is ap % chance that the edit distance between the
suffixes is at least̄d. If k < d + d̄, we conclude that the
corresponding entry will not be a part of the solution with
p % probability.

We have shown that the frequency vectors can be used to
eliminate entries of distance matrix based on a probability
distribution. However, this is useful only if the additional
cost incurred due to computation of the distance distribution

is significantly small. Section 2.2 discusses howµ andσ2

can be computed in constant time, However, this computa-
tion requires the frequency vectors of the unaligned suffixes.
We propose to compute the frequency vectors incremen-
tally, as follows. As the distance matrix is traversed row-
wise (or column-wise), the suffix of one of the sequences
remains unchanged, while the suffix of the other sequence
decreases by one letter. Therefore, the frequency vectors at
any given step of the dynamic programming can be incre-
mentally computed in constant time by decreasing the count
of one letter by one.

Eliminating isolated entries of the DP matrix would not
result in a technique that works faster in practice, because
the overhead necessary in deciding elimination would be
much more than computing the entry itself. Next, we show
how a whole block of entries may be eliminated under cer-
tain conditions, which are frequently encountered in this
formulation.

Optimization 1 (Distance Prune)If Mi,j + d̄ > k, then do
not store the entryMi,j .

Optimization 1 allows us to prune entries inM even
whenMi,j ≤ k. This reduces the space usage of our al-
gorithm. However, this space reduction is obtained at the
expense of additional computation ofd̄. Next, we discuss
how the running time can be reduced by avoiding redundant
computations ofMi,j andd̄.

The traceback path always follows one of the three direc-
tions: 1) up by one, 2) left by one, or 3) diagonally up-left
by one. This limitation in path allows us to avoid computa-
tion of some of the entries ofM .

Optimization 2 (Path Prune)A traceback path passing
throughMi,j also passes through one of the pruned entries
if one of the following conditions holds:

1. Mi−1,s are pruned∀s, 0 ≤ s ≤ j.

2. Mr,j−1 are pruned∀r, 0 ≤ r ≤ i.

Thus, there is no need to compute or storeMi,j and d̄.

Figure 1 shows an example where entries ofM are
pruned by using Optimization 2. For example,M3,1 is elim-
inated since all the paths from (3, 1) to (0, 0) should cross
either (2, 0) or (2, 1). A similar reasoning can be made
for M1,4. This optimization allows us to eliminate entire
columns under a pruned entry or entire rows to the right of
a pruned entry without even computing the value ofM for
those entries. Thus, both space usage and running time of
our algorithm are reduced.

We reduce the space requirement and running time
through early elimination of distance matrix entries at the
expense of additional computation for the distance predic-
tion d̄. Next, we discuss how we minimize this additional
cost.
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0 1 2 3 4 5 6
0 ? ? • ◦ ◦ ◦
1 ? ? • ◦ ◦ ◦
2 • • ? ? • ◦
3 ◦ ◦ • ? ? •
4 ◦ ◦ ◦ • • ? ?
5 ◦ ◦ ◦ ◦ ◦ • ?

Figure 1. An illustration of the optimizations applied to a sam-

ple distance matrixM . The symbol• shows the entries ofM

deleted by Optimization 1. The symbol◦ shows the entries of

M deleted because the traceback path from any of these entries

to M0,0 has to cross an entry marked with• (Optimization 2). The

remaining entries cannot be deleted.d̄ is computed only for the

entries marked with• and?.

Assume that we fill the matrixM row-wise. (i.e., first
row is filled at the beginning, then the second row, and so
on.) Optimization 2 says that we can prune an entry(i, j)
only if a consecutive run of entries are pruned either (1) on
the (i − 1)th row from (i − 1, 0) to (i − 1, j), or (2) on
the (j − 1)th column from(0, j − 1) to (i, j − 1). Thus, if
an entry(i, j) is not eliminated, then elimination of entries
in the remaining row will not provide any pruning for the
rows below. Therefore, at each row, we stop computing the
lower bounding distance as soon as an entry is not pruned.
Similar observation can be made for the columns too. Con-
sider Figure 1. Each row is bounded on the left and right by
• symbols. The lower bounding distance is computed only
for 1) the entries that are marked with•, and 2) the two en-
tries at each row (shown with? symbol) that are neighbors
to • symbols and inside the region bounded by• symbols.
A simple analysis shows that we only need to compute the
lower bounding distanceO(m + n) times.

4 Unbounded global alignment

The traditional N-W method fills the entire distance ma-
trix M in order to find the global alignment. Our method
for bounded alignment does not work for this problem since
there is no prespecified distance thresholdk. We solve this
problem by computing another distance functionD(x, y).
This distance function has to satisfy two criterion:

1. ED(x, y) ≤ D(x, y),∀x, y.

2. D(x, y) can be computed inO(1) time.

Usingk = D(x, y) in our bounded local alignment in Sec-
tion 3, we can find the best global alignment since the edit
distance of the best alignment is guaranteed to be within
the boundk. We develop our DP method by dynamically
updating the value ofk as follows:

k = k0,0 = D(x, y),

k = ki,j = min{k, Mi,j + D(x̄[i + 1], ȳ[j + 1])}
Here,x̄[i + 1] andȳ[j + 1] correspond to suffixes ofx and
y starting from positionsi + 1 andj + 1 respectively. This
leads to our third optimization.

Optimization 3 (Implicit Distance Prune)If Mi,j + d̄ >
ki,j , then do not store the the entryMi,j .

Similar to Optimization 1, Optimization 3 eliminates en-
tries ofM without sacrificing optimality of the result. We
also apply Optimization 2 to further reduce the computation
and space cost of our algorithm.

The pruning capability of our unbounded alignment
method highly depends on the upper bound function
D(x, y) between sequencesx and y. A lower value of
D(x, y) provides a closer approximation to the actual dis-
tance. Thus, it results in a narrow band for our alignment
algorithm. In this section, we will discuss how to find a bet-
ter bound without paying a significant additional cost. The
idea is to compute a sample alignment (not necessarily an
optimal one) quickly betweenx andy. This alignment will
then be used to predict a lower bound to any pair of suffixes
of x andy in O(1) time.

Given sequencesx andy, of lengthsn andm respec-
tively, we align them by coupling their letters starting from
the last one. (i.e.,x[n] with y[m], x[n − 1] with y[m − 1],
etc.) Such an initial alignment and its edit distance can be
computed inO(m+n) time. This upper-bounding distance
function can be incrementally computed inO(1) time for
any given pair of suffixes as follows. As the entries of dis-
tance matrix is computed row-wise or column-wise, the up-
per bound distance for each entry can be incrementally com-
puted from the previous entry by just checking the first letter
of the suffix. If it is a match, then moving to the neighboring
entry inserts a gap. Thus the upper bound distance increases
by one. If it is aligned with a gap then removal of this let-
ter from the suffix eliminated the number of edit operations
by one. Thus the upper bound distance decreases by one.
Otherwise, the upper bound distance stays the same.

Assume that the letters are distributed uniformly across
the sequences. The possibility for a given pair of letters to
be the same is1/γ, whereγ is the alphabet size. Thus, the
expected number of letter pairs that match ismin{m,n}/γ.
For DNA sequences, this would be25 % the length of the
shorter sequence. We conclude that the expected upper
bound distance ismax{m,n} −min{m,n}/γ.

Figure 2(a) presents the matrixM for unbounded align-
ment of sequencesATAC and AGATC. It also shows the
lower bounds computed for each entry ofM and the min-
imum of all the upper bounds computed up to that entry.
Here, we fill the matrix in row-wise order. Note that one
can also traverse the matrix column-wise or diagonal-wise.

Figure 2(b) shows the entries ofM eliminated by Op-
timizations 3 and 2. An entry can be eliminated without
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A G A T C
0 (1, 4) 1 (2, 4) 2 (3, 4) 3 (5, 4) 4 (7, 4) 5 (9, 4)

A 1 (3, 3) 0 (1, 3) 1 (1, 3) 2 (3, 3) 3 (5, 3) 4 (7, 3)
T 2 (5, 3) 1 (3, 3) 1 (2, 3) 2 (3, 3) 2 (3, 3) 3 (5, 3)
A 3 (7, 3) 2 (5, 3) 2 (4, 3) 1(2, 2) 2 (2, 2) 3 (4, 2)
C 4 (9, 2) 3 (7, 2) 3 (6, 2) 2 (4, 2) 2 (3, 2) 2 (2, 2)

(a)

A G A T C
• ◦

A • ◦
T • •
A ◦ • • •
C ◦ ◦ ◦ • •

(b)

Figure 2. (a) The unbounded alignment of sequencesATACandAGATCwith 100 % approximation. At each entry,dist(lb, ub) has the following

meaning:dist = The valueMi,j computed for the distance matrix by the N-W algorithm.lb = the lower bound to the distance of the alignment

that passes from entry(i, j). ub = the minimum upper bound to the distance of the alignment that passes from any entry computed so far. (Entries

are traversed in row-wise order.) (b) The entries ofM eliminated by our method (shown with• and◦). EntriesMi,j marked with• are eliminated

following from Optimization 3 (i.e.,lb > ub). EntriesMi,j marked with◦ are eliminated following from Optimization 2.

sacrificing the optimality of the result if the lower bound is
greater than the minimum upper bound for that entry. For
example, at the entry for the letter pair (C, G), the lower
bound and the minimum upper bound are six and three re-
spectively (see Figure 2(b)).

Our algorithm for unbounded sequence alignment does
not introduce any additional space usage sincek is updated
dynamically. We only keep one integer that stores the last
value of ki,j . Our method incurs additional computation
since we compute an upper bounding functionD(x, y) at
each iteration. This is, however, a negligible cost since 1)
D(x, y) is computed in constant time, and 2)D(x, y) is not
computed for the entries pruned by Optimization 2.

4.1 Extensions to other alignment problems

In Sections 3 and 4 we discussed our methods for two
most common problems: bounded and unbounded sequence
alignment. We discussed the edit distance as the similar-
ity criteria. The algorithms we proposed are very general,
thus can be applied to more complicated distance/similarity
measures, where the cost of each gap is computed using
gap-open and gap-extend penalties. Kahveci et. al., showed
that lower and upper bounds to such scoring methods can be
computed efficiently [9]. However, the distance distribution
for these models needs to be developed.

Another extension of our method is the alignment of a
short query sequenceq to a subsequence of a long sequence
x. This problem is also known aspattern search. Pattern
search problem can be mapped to the methods we describe
here. If a pattern search query seeks for the best alignment,
then it is similar to the unbounded alignment. If a pattern
search query asks for all the alignments above some qual-
ity threshold, then it is similar to the bounded alignment.
For pattern searching, the computation of lower and upper
bounds cannot use the entire suffix ofx. This is becauseq is
aligned to a subsequence ofx. Instead, the prefix (witht let-
ters) of the suffix ofx must be used, wheret is the number

Table 1. The mean and the standard deviation of the distances

between sequences in each dataset.

Seq. Len. 500 1000 2000 4000 8000
Mean 269 533 1060 2121 4202

Std. Dev 9.59 16.15 26.02 35.2 55.02

of letters ofq which are not yet aligned.
Extension of our algorithm to local alignment is nontriv-

ial. This is because a subsequence is aligned from both
sequences. One needs to predict the length of the subse-
quences aligned from both sequences.

5 Experimental evaluation

We used five datasets from human chromosome 18 by
randomly selecting 100 non-overlapping subsequences of
lengths 500, 1000, 2000, 4000, and 8000. These sequences
are then modified with 5 % mutation probability. Table 1
lists the mean and the variance of the edit distance between
the sequences in each of the datasets.

We implemented bounded and unbounded versions of
the traditional N-W algorithm, Ukkonen’s [17] and Fick-
ett’s [5] algorithms, and our Lookahead method using C.
All programs were compiled withgccusing the maximum
optimization level. The experiments were performed on an
Intel Pentium M machine (with 1.4 GHz clock frequency
and 512 MB DDR SDRAM) running GNU/Linux operat-
ing system.

5.1 Bounded global alignment

The first set of experiments examines the space and time
usage for bounded alignment. We use error thresholds of
k = 5, 10, 25, 50, 75 and 90 % of the sequence length.
For each dataset, we align every sequence to every other
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sequence in our experiments.
Figure 3(a) compares the ratio of the filled entries of the

DP matrix to the size of the matrix of Lookahead, N-W and
Ukkonen algorithm for sequence length of 8000. The ap-
proximation is set to 100 % to guarantee that the Lookahead
method obtains the same alignment as the N-W or Ukkonen
algorithm. Among the three techniques, Lookahead consis-
tently fills the smallest amount of the DP matrix for all error
rates. For 10 % error rate, the space usage of Lookahead
is only 3% of that of N-W and 17% of that of Ukkonen’s
method. As the error rate increases, all the methods use
more space. When error rate is 90 %, Lookahead uses only
68 % of the space used by the competing methods.

Figure 3(b) shows the average running time to align a
pair of sequences of length 8000 for varying error rates. Our
method significantly outperforms both N-W and Ukkonen’s
algorithm for all error rates. Ukkonen’s method outper-
forms N-W for small error rate. However, as the error rate
increases, their performance converge to each other. The
speedup of our method over the next fastest method ranges
from 1.75 to 5. The largest speedup is observed for small
error bounds.

5.2 Unbounded global alignment

The second set of experiments examines the space and
time usage for unbounded alignment. For each dataset, we
align every sequence to every other sequence in our exper-
iments. The experiments are run using Lookahead, N-W,
and Fickett’s algorithm. We run Lookahead with varying
approximation percentages.

Figure 4(a) shows the ratio of the number of entries in
distance matrix filled to the total number of entries in the
matrix. The ratio is always 1.0 (one) for the N-W method
since it fills the entire DP matrix for unbounded alignment.
Lookahead uses significantly less memory compared to N-
W and Fickett’s method for all query lengths even when it
has 100 % approximation. The memory usage of Looka-
head varies between 67% and 75 % of that of the Fickett’s
method. With 99 % approximation, Lookahead fills approx-
imately 35 % of the DP matrix. Thus the memory usage
of Lookahead is approximately 45 % of that of Fickett’s
method.

Figure 4(b) plots the average running time for the exper-
iments in Figure 4(a). Fickett’s method runs slower than N-
W although it computes fewer entries. This is because the
amount of DP matrix computations avoided does not com-
pensate for the additional computation to prune these en-
tries. On the other hand, Lookahead is faster than both com-
peting methods even at 100 % approximation for all query
lengths. The total running time of Lookahead further drops
when the approximation is set to 99 %.

Table 2 shows the ratio of the number of entries filled to
the total size of the DP matrix and running time of Looka-

Table 2. The percentage of the number of DP matrix entries

filled, running time, and the accuracy of Lookahead for varying

approximation percentages for sequences of length 8000. For the

same experiment, N-W and Fickett’s method run in 1080 and 1160

milliseconds respectively.

Approximation [%]
50 60 70 80 90 95 99

Space [%] 13 22 24 26 29 31 34
Time [ms] 182 294 319 345 381 405 468
Acc. [%] 93 100 100 100 100 100 100

head for varying approximation percentages for sequences
of length 8000. In We calculate theaccuracyof an align-
ment as(1 − D−D∗

D∗ ) × 100, whereD andD∗ are the pre-
dicted and correct edit distances, respectively. We report the
average values for space, time, and accuracy over all queries
in Table 2. N-W and Fickett’s method fill 100 % and 72 %
of the DP matrix respectively. N-W and Fickett’s method
run in 1080 and 1160 milliseconds respectively. The ta-
ble shows that as the approximation percentage drops, the
memory usage and the running time of Lookahead drops.
The saving in space is much greater than the saving in run-
ning time. This is because Lookahead spends additional
time to compute the distance distributions.

One important observation from Table 2 is the following:
The accuracy percentage is significantly higher than the ap-
proximation percentage. This happens because of two rea-
sons. First, there may be multiple traceback paths that give
the same edit distance. Therefore, even if one of the optimal
solutions is discarded during approximation, others may re-
main, leading to an optimal solution. Second, Lookahead
computes an upper bound to the edit distance. The approx-
imation to lower bound, on the other hand, does not exceed
the upper bound with probability p%. Thus the probabil-
ity that it does not exceed the actual edit distance is much
greater than p%.

5.3 Evaluation of hardware characteristics

To obtain a more insightful knowledge on the achieved
speedups, we use the Pentium 4 hardware performance
counters [16] to breakdown the performance improvement
and attribute to various run-time characteristics. Table 3
lists the run-time characteristics of the experimented al-
gorithms. For bounded alignment, we used sequences of
length 32 K. The memory overhead required by Fickett was
too large to run on the experimented Pentium 4 machine.
Therefore, we used a smaller input data set with input se-
quence length of 16 K for unbounded alignment experi-
ments. As can be seen, Lookahead significantly reduces the
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Figure 3. (a) The ratio of the filled entries of the DP matrix to the size of the DP matrix, and (b) the running time of Lookahead method, N-W,

and Ukkonen’s method for bounded alignment for varying error rates for sequences of length 8000.t % error rate corresponds to an error bound of

t % of the sequence length. We used 100 % approximation in this experiment.

computation overhead by showing reduced hardware event
counts in almost all the experiments. For example, com-
pared with the N-W technique, our method reduces the to-
tal executed instructions by a factor of 3.98 for 60 % error
rate. The reductions for loads, stores, branches and float-
ing point instructions are 3.46X, 3.65X, 5.36X and 18.51X
respectively. Compared with the N-W technique, Looka-
head also yields fewer total cache misses, TLB misses and
mispredicted branches. On a high-performance micropro-
cessor such as Pentium 4, microarchitecture events such as
cache misses and branch mispredictions imply performance
penalty by causing undesirable pipeline stalls and flushes.
Table 2 shows that in few cases, our methods can yield
higher number in instruction cache misses, D-cache load
misses, ITLB misses and mispredicted indirect branches.
Nevertheless, the aggregated computation reductions result
in a speedup ranging from 1.64X to 2.94X.

6 Discussion

In this paper, we addressed bounded and unbounded se-
quence alignment problems. We proposed two approximate
DP solutions, namedLookaheadto these problems. Looka-
head computes the distribution of the edit distance between
the unaligned parts of sequences. It discards the entries of
the DP matrix that would not lead to the optimal solution,
with probabilityp, for a givenp, thus saving both space and
time.

For the bounded alignment, the space usage of our
method ranged from 17 to 68 % of that of N-W and Ukko-
nen’s detour method even with 100 % approximation. We
achieved up to 3 times speedup to the next fastest method in
our experiments. For the unbounded alignment, our exper-
iments show that Lookahead uses only 35 % and 47 % of

the space used by N-W and Fickett’s method respectively
with 99 % approximation. We achieved almost three times
speedup over N-W and Fickett’s method. Further, we used
the hardware performance counters to perform a detailed
workload characterization of different alignment methods.
We found that our method can significantly reduce the to-
tal computational requirement and yield much better statis-
tics in terms of cache misses, TLB misses and mispredicted
branches.

The algorithms we proposed can be applied to more
complicated distance/similarity measures as well. In the fu-
ture, we plan to extend our work to problems such as pattern
search and local alignment.
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