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Abstract Several efforts are currently underway to decipherthe properties of neurons in the network, before we can dis-
the connectome or parts thereof in a variety of organismsern such results for other classes of networks.
Ascertaining th il hysiological properti i .

scerta 'ing the detailed physiological p ope ties oftiad Keywords Spiking neurons Connectomics Feedforward
neurons in these connectomes, however, is out of the scope

. ) networks

of such projects. It is therefore unclear to what extent Know
edge of the connectome alone will advance a mechanistic
understanding of computation occurring in these neural ¢iry |ntroduction

cuits, especially when the high-level function of the said c

cuit is unknown. We consider, here, the question of how th@ecent remarkable experimental advances (Denk and
wiring diagram of neurons imposes constraints on what neysorstmann, 2004; Hayworth et al, 2006; Knott et al, 2008;
ral circuits can compute, when we cannot assume detaileglishchenko et al, 2010; Turaga et al, 2010; Helmstaedter
information on the physiological response properties ef th et al, 2011; Mikula et al, 2012) have brought the prospect
neurons. We call such constraints — that arise by virtue off ascertaining the connectome or parts thereof closer to
the connectome eonnectomic constraints on computation.  reality (Chklovskii et al, 2010; Kleinfeld et al, 2011; Se-
For feedforward networks equipped with neurons that obe)[mg, 2011; Denk et al, 2012; Reid, 2012; Helmstaedter et al,
a deterministic spiking neuron model which satisfies a smali013)_ This data is currently not expected to include infor-
number of properties, we ask if just by knowing the archi-mation on the detailed physiological properties of all the
tecture of a network, we can rule out computations that iheyrons in the connectome. Even so, already, there have
could be doing, no matter what response properties each gken two pioneering studies (Briggman et al, 2011; Bock
its neurons may have. We show results of this form, for cergt g, 2011) that fruitfully use electron-microscopy recon
tain classes of network architectures. On the other hand, Wgryctions in conjunction with two-photon calcium imaging
also prove that with the limited set of properties assume@n the same tissue. In (Briggman et al, 2011), the authors
for our model neurons, there are fundamental limits to the,sed this approach to rule out certain models of direction
constraints imposed by network structure. Thus, our theorge|ectivity in the retina. The other study (Bock et al, 2011)
suggests that while connectomic constraints might restricexamined the orientation-selectivity circuitry in the teor
the computational ability of certain classes of network arand found that inhibitory interneurons received convetrgen
chitectures, we may require more elaborate information oRnatomical input from nearby excitatory neurons that had a
broad range of preferred orientations. Recent work (Take-
Computer and Information Science and Engineering, mura et al, 201_3) has alsfo usgd _Co_nneCtomi_C recantruc'
University of Florida, Gainesville, FL 32611, USA. tions of the motion detection circuit in the fruit fly visual
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use functional imaging seems to require that (a) we haverties of the neurons before connectomic constraints on the
an a priori credible hypothesis about at least one hightlevecomputational ability of such networks can be discerned.
computation that the neural circuit in question is perform- Before we can examine these questions, we are con-
ing and (b) we have a way of experimentally eliciting per-fronted with the problem of having to define what computa-
formance of the said computation, usually via an approprition exactly means, in this context. Physically, neurond an
ate stimulus. Unfortunately, neither of these conditiops a their networks are simply devices that receive spike-frain
pear to be satisfied for a majority of neuronal circuits in theas input, and in turn generate spike-trains as output. It is
brain, especially as one moves away from the sensory/motdhis translation from spike-trains to spike-trains thadrett-
periphery. Suppose, in addition to its wiring diagram, weterizes information processing and indeed even cognition i
knew the detailed physiological response properties of allhe brain. It is tempting to view a feedforward network as a
the neurons in such a neural circuit to the extent that wéransformation, which is to say a function, that associates a
could predict circuit behavior (via simulations, for exam- unique output spike train with each combination of afferent
ple). This might provide a way forward towards advancinginput spike trains, since such networks do not have recurren
hypotheses about what high-level computation(s) the itirculoops. This is the intuition we will seek to make precise.
is actually involved in. Regrettably, ascertaining theadet Since the functional role of single neurons and small
physiological response properties of all the neurons i sucnetworks in the brain is not yet well understood, we do
a network appears to be out of reach of current experimentalot make assumptions about particular high-level tasks tha
technology. The prospects of obtaining the wiring diagramthe network is trying to perform; we are just interested
however, seem to hold more promise. The question therefoia physical spike-train to spike-train transformationsgkd-
becomes: (1) What can we learn from the wiring diagramwise, since the kinds of neural code employed are un-
alone, even when the specific high-level function of the neuelear, we make no overarching assumptions about the neu-
ral circuit may be unknown? (2) Are there fundamental lim-ral code either. We study precise spike times since there is
its to what can be learned from the wiring diagram alone, invidespread evidence (Strehler and Lestienne, 1986; Rieke
the absence of more detailed physiological information? et al, 1997, & references therein) that precise spike times
play a role in information processing in the brain, in many
To investigate these questions, we have studied a nefaoes: I_ndeed, S_pike-Timing Dependen.t_PIasticity, a clgss
work model equipped with neurons thatobeyr:1deterministi<(:)_f Hebblan learning rules th_at ar_e sensitive to thg relative
fiming of pre and postsynaptic spikes have been discovered
%Markram et al, 1997; Bi and Poo, 1998) that support the
. . . role of precise spike-timing in computation in the brain.
sponse properties each of their neurons may have. The mgtud : e i L
ying spike times also subsumes cases where spiking

plication, then, is that, owing to its structure, the netiwisr .
oo . . rate may be the relevant parameter and therefore there is no
unable to effect the computation in question. That is, con-

nectomic constraints forbid the network from performingIOSS of generality in making this assumption.
the said computation. In addition, to rule out the possibil-
ity that this computation is so “hard” that no network (of 2 Notation and Preliminaries
any architecture) can accomplish it, we stipulate the need
to demonstrate that there exists a network (of a different ann this section, we define the mathematical formalism used
chitecture) comprising simple neurons that can indeed efto describe spike-trains and frequently-used operations o
fect this computation. The goal of this paper is to establisthem that, for instance, shift and segment them. The reader
results of this form for various network architectures, af-may skim these on the first reading and revisit them if a spe-
ter setting up a mathematical framework within which thesecific technical point needs clarification later on.
guestions can be precisely posed. As a first simplifying,step  An action potential or spike is a stereotypical event
in this paper, we limit our study to feedforward networkscharacterized by the time instant at which it is initiated in
of neurons. Having started with this goal, however, we alsdhe neuron, which is referred to as #pike time. Spike
find that with the small number of basic properties assumetimes are represented relative to the present by real num-
for our model neurons, there are fundamental limits to thders, with positive values denoting past spike times and
computational constraints imposed by network structure, i negative values denoting future spike timesspghke-train
certain cases. In particular, we prove that, constrainégl onx = (x!,22,... 2% ...) is a strictly increasing sequence
by the properties in the current neuron model, every feedforof spike times, with every pair of spike times being at least
ward network, of arbitrary size and depth, has an equivalent apart, wherev > 0 is the absolute refractory peribdnd
feedforward network of depth equal to two that effeets T w , , -

. . L . e assume a single fixed absolute refractory period for all neu-
actly the same computation. The implication of this result;ons; for convenience, although our resuits would be no diffeif
is that we need more elaborate information about the propdifferent neurons had different absolute refractory peviod

of specific architecturesannot perform, no matter what re-
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z' is the spike time of spiké. An empty spike-train, de- 3 The Neuron Model
noted by, is one which has no spikes. #me-bounded
spike-train (with bound (a, b)) is one where all spike times The present work treats the setting in which we know the
lie in the bounded intervals, b), for somea, b € R. We use  wiring diagram of a network, but lack detailed information
S to denote the set of all spike trains aﬁgyb) to denote on the response properties of its neurons. We then wish to
the set of all time-bounded spike-trains with boyndb). A show computations that the network cannot accomptish,
spike-train is said to havegap in the interval(c, d), ifithas ~ matter what response properties its neurons may have. The
no spikes in that time interval. Furthermore, this gap id sai modeling question we must first address, therefore, is what
to be oflength d — . kind of neuron model we ought to use in such a context.
While we lack detailed information on each of the neu-
rons in the network, it is reasonable to assume that all the
We use the ternspike-train ensemble to denote a col-  neyrons in the network satisfy a small number of elemen-
lection of spike-trains. Thus, formally,spike-train ensem {51y properties. For example, spiking neurons are gewerall

ble x = (x1, - X)) IS @ tE'p'e of spike-trains. jrharde-r “known to have an absolute refractory period and most of
Qf a spike-train ensemble is the .numbe.r of sp.nke't"’“nS Mhem settle to a resting membrane potential upon receiving
it. For example,x = (xi,...,Xm) is a spike-train ensem-  jnpyt for sufficiently long, where this resting membrane

ble of orderm. A time-bounded spike-train ensemble (with  potential is smaller than the threshold required to elicit a
bound (a, b)) is one in which each of its spike-trains is time- gpjke. We wish to have a model that is contingent on a small
bounded (withbound (a, b)). A spike-train ensemblg is  nymber of such basic properties, but whose responses are
said have agap in the interval(c, d), if each of its spike  ynconstrained otherwise, in order to allow for a large class
trains has a gap in the interv@al, d). of possible responses.

Mathematically, we formulate the neuron as an abstract

, . . mathematical object that satisfies a small number of axioms,
Next, we define some operators to time-shift, segment

. . . . . _which correspond to such elementary properties.
and assemble/disassemble spike-trains from spike-train e Anoth hink ab h del i h
sembles. Letx = (z',2%,....2% ...) be a spike-train nother way to think about the model is as one that

and x = (x1,...,%n) be a spike-train ensemble. The brings “under its umbrellaj’ several other_ neuron models.

time-shift operator for spike-trains is used to time-shift all These_are models that.sausfy the properties that our model
the spikes in a spike-train. Thus(x) — (! — #,22 — is contingent on. In Online Resource A, we demonstrate, for
t,...,a% —t,...). Thetime-shift operator for spike-train mstanpe, that neuron modgls such as the Leaky Integrate-
ensembles is defined assi(y) = (04(x1), ..., 04(xm))- and-Fire Model and the Spike Response Model SRsit-

The truncation operator for spike-trains is used to “cut isfy these properties up to arbitrary accuracy. Our model ca

out” specific segments of a spike-train. It is defined as foI—thus be seen as a generalizafiaf these neuron models,

lows: =, )(x) is the time-bounded spike-train with bound :pﬁﬁgg‘”y one that allows for a much wider class of re-
[a, b] that is identical tox in the interval[a, b]. =, ) (x), P ' _ .
Z(ay)(x) and Sy, (x) are defined likewise. In the same There are also qther strong reasons for fa.mploylng this
vein, 5, ) (x) is the spike-train that is identical toin the type of modgl. Crucially, it allgws the possibility of incre
interval [a, 00) and has no spikes in the intervatco, a). mentglly adding more propertle§ to the neuron model, and
Similarly, =_..,(x) is the spike-train that is identical stqdylng howthatfurther'constralns the computatlopaﬂ)pro
to x in the interval(—oo,b] and has no spikes in the in- erties of the network. This would model the scenario where

terval (b, 00). Z(a.00)(X) ANd 5(_ s 1) (x) are also defined we have more detailed knowledge about individual neuron

’ + —(a,00 —(—o0, . . . .
similarly. The truncation operator for spiketrain ensem- properties, which might well turn out to be the case with
blesis defined asS(, 4 (x) = (Zjas (X1): - - > Zat) (Xm))- the connectome projects. While technical hurdles presently
R ) Sy (X) ’5[ )7(X) ’5(7’ 4(x), lieinthe way of inferring, for example, distributions ofio
2 ’ NEY) and Z( o) ()é) are defihed likewise. i:urther- channels and neurotransmitter receptors in each neuron us-
mofe,Et(~) is shorthand fot=}, 4 (-). The projection oper- ing electron microscopy(Denk et al, 2012), it is conceieabl
ator for spike-train ensembles ié used to “pull-out” a spe- that future advances make this possible, giving us a better

cific spike-train from a spike-train ensemble. It is definedSense of the physiological properties of all the individual
asl;(x) = x;, wherel < i < m. Letyy,ys,...,y, Neurons in the connectome; other future technological ad-

be spike-trains. Thipin operator for spike-trainsis used to 2 Model h as the Leaky Integrate-and-Fire (LIF) and Spike R
“ R o tra . oo tra odels such as the Leaky Integrate-and-Fire and Spike
bundle-up” a set of spike-trains to obtain a Sp|7ll(e traip en sponse Model (SRM), in addition to the constraints in our modetha

semble. It is defined agy Uy, U ... Uy, = |]y: = their membrane potential functioR(-) specified outright. In case of
i=1 the LIF model, this is specified via a differential equation &mdhe
(¥Y1,¥2,- -, ¥n)- case of SRM, the specific functional form is written down exgiic
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vances may also help in this direction. Furthermore, the nee5.
for adding more properties to the model and studying the
consequences will become especially apparent towards the
end of this paper, when we show limits to the constraints im-
posed by the present set of properties assumed in the model.

3.1 Properties

We start off by informally describing the properties that ou
model is contingent on. Notable cases where the properties
do not hold are also pointed out. This is followed by a formal
mathematical definition of the model. The approach taken
here in defining the model is along the lines of the one in
(Banerjee, 2001).

The following are our assumptions: 5

. We assume that the neuron is a device that receives in-
put from other neurons exclusively by spikes which are
received via chemical synapses.

. The neuron is a finite-precision device with fading mem-
ory. Hence, the underlying potential function can be de-
termined from a bounded past. That is, we assume that,
for each neuron, there exist positive real numbeend

p, SO that the current membrane potential of the neu-
ron can be determined as a function of the input spikes
received in the pasf milliseconds and the spikes pro-
duced by the neuron in the pasmilliseconds. The pa-
rameter?” would correspond to the timescale at which
the neuron integrates inputs received from other neurons
andp corresponds to the notion ol ative refractory pe-

riod.

. Specifically, we assume that the membrane potentia -
of the neuron can be written down as a real-valued,
everywhere-bounded function of the forf(y;xo),
where xq is a time-bounded spike-train, with bound
(0,p) andy = (x1,...,X,,) is a time-bounded spike- 8-
train ensemble with bound0,7’). Informally, x;, for

1 < < m, is the sequence of spikes afferent in synapse
1 in the pastl” milliseconds andk is the sequence of
spikes efferent from the current neuron in the past

LetT > 0 be the threshold that the membrane poten-
tial must reach in order to elicit a spike. Observe that
the model allows for variab¥ethresholds, as long as the
threshold itself is a function of spikes afferent in the past
Y milliseconds and spikes efferent from the present neu-
ron in the pasp milliseconds. Furthermore, when a new
output spike is produced, in the model, the membrane
potential immediately goes below threshold. That is, the
membrane potential function in the model takes values
that are at most that of the threshold. This simplifies our
condition for an output spike to be that ti-) merely

hits threshold, without having to check if it hits it from
below, since it cannot hit it from above. Again, this is
done without loss of generality. Additionally, latbe a
negative real number that represents a lower-bound on
the values that the membrane potential can take.
Output spikes in the recent past tend to have an in-
hibitory effect, in the following sen§e

P(x;x0) < P(x; ¢), for all “legal” x andx.

Thus, our model allows for a wide variety of AHPs.
Indeed, the only constraint on AHPs is the one given
above. That is, suppose, in the first case that at a cer-
tain point in time the neuron received spikes in the past
T seconds present ig as input and did not output any
spikes in the pagt milliseconds. In the second case, sup-
pose that at a certain point in time the neuron again re-
ceived spikes in the pa%tseconds present ipas input

but output some spikes in the pastilliseconds. The
condition states that the membrane potential in the sec-
ond case must be at most that of the value in the first
case. Thus, our results will be true for any neuron model
that has an AHP that obeys this condition.

Owing to the absolute refractory periad> 0, no two
input or output spikes can occur closer thanThat is,
supposexg = (x},2%,...,zk), wherez} < a. Then
P(x;x0) < T, for all “legal” x.

Finally, on receiving no input spikes in the pabt
milliseconds and no output spikes in the pastillisec-
onds, the neuron settles to its resting potential. That is,

milliseconds. The functionP(-) characterizes the en- A feedforward network of neurons, is a Directed Acyclic

tire spatiotemporal response of the neuron to spikes ingraph where each vertex corresponds to an instantiation
cluding synaptic strengths, their location on dendriteSyf the neuron model, with the exception of some vertices,

an_d their modu!ation of each other’s effec'Fs at the somayesignated as input vertices (which are placeholders for
spike-propagation delays, and the postspike hyperpolar-

ization.
. Without loss of generality, we assume the resting me
brane potential to be.

5 In many biological neurons, the membrane potential that the soma
(or axon initial segment) must reach, in order to elicit a spikeos n
mf_ixed at all times and is, for example, a function of the inacibratev-
els of the voltage-gated Sodium channels. Our model can acaimod

actions (Shepherd, 2004).

or neuromodulation in this paper.

this phenomenon, to the extent that this threshold itself isiatfon of
spikes afferent in the pa3t milliseconds and spikes efferent from the
present neuron in the pasmilliseconds.

4 We do not treat stochastic variability in the responses of neuron © This is violated, notably, in neurons that have a post-inbipi
rebound.

3 In this work, we do not treat electrical synapses or ephaptér-n
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input spike-trains); one neuron is designated the output

neuron. Theorder of a feedforward network is equal to the
number of its input vertices. Thdepth of a feedforward
network is the length of the longest path from an input
vertex to the output vertex.

Next, we formalize the above notions into a rigorous defini-
tion of a neuron as an abstract mathematical object.

Definiton 1 (Neuron) A neuron N is a 7-tuple
(o, Y, p, 7, \,m, P 5(’33) X S(OJ)) — [\ 7]), where

t =t t=0

Output spike train
when the 1st input
spike is absent

Membrane potential
when the 1st input
spike is absent

Output spike train

Membrane potential
with AHP
effects

Membrane potential
after ignoring

AHP effects

a,T,p,7 € Rt withp > o, A € R~ andm € Z*. Fur-
thermore,

Input spike train

1. Ifxg = (x(l),x%, .. ,x(’§> with x(l) < a, thenP(x;xg) < PAST _/_P —6/2
7, forall x € 873 ., and for allx € S(q,,)- o put spie

2. P(x;x0) < P(x; &), forall y € S™ __ and for allx, € Fig. 1 This counterexample describes a single neuron which has just
_(X O) - (X ¢) X (0,7) 0 one afferent synapse. Until timg in the past, it received no input
3(0,;))- spikes. After this time, its input consisted of spikes that arrieeery

3. P((¢p,,...,0); ) =0. p — &/2 milliseconds, wher® < § < 2(p — «). An input spike alone

(if there were no output spikes in the pasmilliseconds) causes this
neuron to produce an output spike. However, in addition,af¢hwere
an output spike within the pagtmilliseconds, the afterhyperpolariza-
tion (AHP) due to that spike is sufficient to bring the potentialow
threshold, so that the neuron does not spike currently. Weftirereb-
serve that if the first spike of the input spike-train is absent the
output spike-train changes drastically. Note that this ckaggurs no
matter how often the shaded segment in the middle is replicated, i.
As discussed earlier, it is intuitively appealing to vievede it does not depend on how long ago the first spike occurred. Thes, t

forward networks of neurons as transformations that mapOl{ntefexamgle deg’lonStLateS that the fmem_braﬂe pf?lientri]al apigny p .
Input spike-rans to ouput spike-rans. In tis section 110 1Y Sebe o e Posen o 4 L e e e
seek to make this notion precise by clarifying in what Sensemg periodic and the two output patterns being phase-shifteti a
if at all, these networks constitute the said transfornmestio necessary ingredient of the counterexample; i.e. it is striaigtard
It will turn out that even single neurons cannot correctlyto construct a (more complicated) counterexample that exttibiss
be viewed as such transformations, in general. In the nexgme Phenomenon where neither the input spike-train nor thertoutp

. . . spike-train are periodic and where the two output spike pattere not
section, however, we show that under biologically-relévan,pase_shifted versions of each other.
spiking regimes, we can salvage this view of feedforward
networks as spike-train to spike-train transformations.

Let us first consider the simplest type of feedforward
network, namely a single neuron. Observe that our abstra#itPut spikes alone, the current membrane potential may de-
neuron model does not explicitly prescribe an output spikePend on the position of an input spike that has occurred arbi-
train for a given input spike-train ensemble. That is, recaltrarily long time ago in the past. To sum up, this counterex-
from the previous section, that the membrane potential oRMmple proves that, without further restrictions, even a sin
the neuron depends not only on the input spikes received i@le neuron cannot be correctly viewed as a bounded-length
the pasf” milliseconds, it also depends on the output spike$Pike-train to spike-train transformation.
produced by it in the pagtmilliseconds. Therefore, knowl- This pessimistic prognosis notwithstanding, it may seem
edge of just input spike times in the paStmilliseconds that if we knew the infinite history of input spikes received
does not uniquely determine the current membrane potetyy the neuron, we should be able to uniquely determine
tial (and therefore the output spike-train produced from it its current membrane potential. Unfortunately, the situmat
It might be tempting to then somehow use the fact that pagtirns out to be even more dire — this turns out not to be
output spikes are themselves a function of input and outthe case. Before we demonstrate this, we must return to the
put received in the more distant past, and attempt to makissue of what it means for a neuron pooduce an output
the current membrane potential a function of a bounded akpike-train when it receives a certain spike-train ensembl
beit larger “window” of past input spikes alone. The simpleas input. That is, suppose the reader had an instantiation of
counterexample described in Figure 1 shows that this doesur neuron model, which in this case would mean the val-
not work. In particular, if we attempt to characterize the cu ues of?", p andr and the membrane potential functi®q-).
rent membrane potential of the neuron as a function of pagturther, suppose the reader were given an input spike-train

A neuron is said t@enerate a spike wheneverP(-) = 7.

4 Feedforward Networks as Input-to-Output
transformations
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20— & if x € 8™ and the following holds. For every € R,
| | | , Zxo = (t) if and only if
! ! ! Second P(E(O,T) (Ut(X))v E(O,p) (Ut(XO)) =T.

consistent

output The question, therefore, is the following. For every (un-
bounded) input spike-train ensembjedoes there exist ex-
actly one (unbounded) output spike traég, so thatxq is
consistent withy with respect to a given neurdw? As al-
luded to, the answer turns out to be in the negative. The
First counterexample in Figure 2 describes a neuron and an in-
N finitely” long input spike-train, which has two consistent
output spike-trains.
The underlying difficulty in defining even single neurons
. . as spike-train to spike-train transformations, with batw
0 I I [ S N T points discussed above, is persistent dependence, inagener
of current membrane potential on “initial state”. The way
to circumvent this difficulty would be to impose additional
. . I - restrictions which render such counterexamples untenable
Fig. 2 The counterexample here is very similar to the one in Figure 1 . . . A
except that, instead of there being no input spikes beforee have  FOT €xample, there is the possibility of considering just a
an unbounded input spike-train ensemble, with the same periqulic i~ Subset of input/output spike-trains, which have the priyper
spikes occurring since the infinithe past. _Th'e:_neUFO? hoege hmﬁgﬂ A of the current membrane potential being independent of the
e o 0 e e Hbut spkes beyond a certin tme in the past. Such a sub-
corresponding membrane potential traces appear below easisiem ~ S€t would certainly exclude the examples discussed in this
output spike train. section. This would correspond to restricting our theorg to
certain kind of spiking regime.

In the next section, we come up with a condition that, in
ensembley and told that the neuron “produced” the output €ffect, restricts spike-trains to biologically-relevaptiking
spike-trainx, when driven byy. Then, all that the reader regimes and prove that this implies independence as alluded
can do to verify this claim is to check if the given output t0 above. Roughly speaking, the condition is that if a neu-
spike-train isconsistent with the input spike-train ensem- on has had a recent gap in its output spike-train equal to
ble for the given neuron in the following sense. We wouldat leasttwice its relative refractory period, then its current
go to each point in time where the neuron spiked and plug€mbrane potential is independent of the input beyond the
into P(-) the input spikes in the padt milliseconds from relatively recent past. We show that this leads to the notion
y, and output spikes from the pasmilliseconds fromx,  ©Of feedforward networks as spike-train to spike-train $ran
and check if the value aP(-) equals the threshold. Like- ~ formations to be well-defined.
wise, for the time points where the output spike-train does
not have a spike, we need to check that this value is less
than the threshold. If the answers are in the affirmative fob The Gap Lemma and Criteria
all time-points we can say that the given output spike-train
is consistent with the given input spike-train ensemble with In this section, we devise a biologically well-motivatedeo
respect to the neuron in question. However, this still alow dition that guarantees independence of current membrane
the possibility of more than one consistent output spik@itr  potential from input spikes beyond the recent past. This con
to exist for a given input spike-train ensemble, with res$pecdition is used in constructing a criterion for single newson
to a given neuron. Indeed, we will demonstrate that this poswhich when satisfied, guarantees a unigue consistent out-
sibility can occur and therefore given the infinite histofy o put spike-train and leads to the view of a neuron as a trans-
input spikes received by the neuron, we cannot uniquely dormation that maps bounded-length input spike-trains to
termine the output spike train produced. Before getting int bounded-length output spike-trains. After this, similar c
the counterexample, for completeness, let us formally definteria are defined for feedforward networks, in general.
this notion ofconsistency. Recall that(t) denotes a spike- For a neuron, the way input spikes that happened suf-
train with a single spike at time instant ficiently earlier affect current membrane potential is via a
causal sequence of output spikes, causal in the sense that

" output

p—46/2

Definition 2. An output spike-trairk is said to beconsis-

tent with an input spike-train ensembjg with respectto @ 7 The interested reader is referred to Online Resource B for a dis-
neuronN{«, Y, p, 7, A\, m, P : S(’S r) X Sw,p) — [AT]),  cussion onthe issue of infinitely-long input spike-trains in tiiatext.
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Fig. 3 This figure illustrates the idea behind the Gap Lemma. Suppose t+p+ 7T t+2p t+op t
there exists a neuron, withf and p being the lengths of input and ! P P
output windows respectively, that “effects” the transformatshown OUTPUT | I : J | L : ! Zo
above. Let(t’ — t) > 7. Suppose, the spikes in the shaded region, '{_ ! I ! !
which is an interval of lengtl occurred at the exact same position, for i X X X
all input spike-train ensembles that are identical in the rdhgé], but & - | — —]
have spikes occurring at arbitrary positions older than tinseaimtt’. INPUT . L . . | X
Then, the membrane potential of that neurohiaidentical in all those —— = — I
cases. This implies that the spikes in the shaded region are dofunct T
of exactly the input spikes in the intervigl ¢']; in particular, they are PAST
independent of input spikes occurring befefe Fig. 4 This figure helps visualize the intuition behind why a gap of

length2p suffices to guarantee independence in the Gap Lemma. Sup-
pose a neuron on receiving an input spike-train ensergblépro-
duces®an output spike-trainc}. Further, supposex; has a gap of
length2p ending at time instarit Now letx be some input spike-train

I ensemble, which is identical g* in an interval of lengt"+ p ending
each output S_p|k6 In the sequence had an ef‘_fect on the Menyy; | etx, be the output spike-train "produced” iy Then, the condi-
brane potential while the subsequent one in the sequengen guarantees thaty has a gap of length immediately preceding

was being produced and the input spike in question had dere is why. When the neuron is being drivermb, clearly, the mem-

effect on the membrane potential, when the oldest OutpLE[rane potential is belo_w th_reshold at each time instamiilliseconds _
eforet. At each such time instant, the neuron has no past output spikes

spiI§e in the.same sequence was produced. As a result, whefjjiseconds previously. Now, when the neuron is being driverb
an input spike is moved, this effect could propagate acrosastead, there is no guarantee that the earlier half opthgap is pre-
time and cause the output spike train to change drastica”?erved . Thus, at each time instamilliseconds before, the neuron

The condition in the Gap Lemma, in effect, seeks to breaksees” the same input spike-train enseniblenilliseconds previously
! ' as withx*, but possibly some past output spikesnilliseconds pre-

the causality in this causal chain. viously. Therefore, it's membrane potential at each such timeust
may be less than or equal to the corresponding value while themeu
Figure 3 elaborates the main idea behind the condiwas being driven by*, since, intuitively, the presence of recent effer-
tion. Suppose there exists a neuron, vilitlandp being the ~ ent spikes could serve to afterhyperpolarize the membranet'paj_?e_n
lengths of input and output windows respectively, that “ef-1"uS: Since the membrane potential was already below thresHibisin
. ) . time interval while the neuron was being driven Yy, it is below the
fects” the transformation shown in Figure 3. In a nutshelltreshold, while the neuron is being driven fyas well.
if there was a guarantee that spike positions in an interval
of lengthp in the output spike train would remain invariant
to changes in the past input spike-train ensemble, then this
would break the aforementioned causal chain. Lemma 1 (Gap Lemma). Consider a neuron
N{a, T, p,7,A\,m, P : S(’&T) x S, — [AT]), a
The question, of course, is what condition might guar-spike-train ensemble x* of order m and a spike-train xo*
antee such a situation. It turns out that a gap of lerdgth which has a gap in the interval (¢,¢ + 2p), so that xo* is
in the output spike-train suffices, as the next lemma showsonsistent with x*, with respect to N. Let y be an arbitrary
That is, if the neuron effects a transformation withgegap,  spike-train ensemble that is identical to x* in the interval
say ending at, present in the output, then forbeing? +p  (t,t + 7 + p).
milliseconds before, such that no matter how input spikes  Then, every output spike-train consistent with , with re-
older thant’ are changed, the latter half of thg gap is guar- spect to N, hasagap intheinterval (¢, ¢ + p). Furthermore,

anteed to have no spikes in each case. Therefore, membragieis the smallest gap length in x¢;, for which thisis true.

potential starting at, is the same in all such cas@s. also

turns out to be the smallest gap length for which this works-

Figure 4 offers some brief intuition on why a gap of length 8 For the sake of simplicity of exposition, assume there is exactly
. . . ne consistent output spike-train. This is not a requirementlabay

2p suffices to guarantee independence. The technical detaﬁgme clear in the lemma.

are in the following lemma. A formal proof is available in o Formally, this follows from Axiom 2 in the definition of our ab-

Online Resource B. stract neuron.
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The Gap Lemma has some ready implications as stated ¢
in the corollary below. A proof is available in Online Re-
source B.

1T T 1 OuUTPUT

Corollary 1. Consider a neuron N{«,Y, p,7,A\,m, P

Sy X S0,0) = [A,7]), @ spike-train ensemble x* of or- -
der m and a spike-train xo* which has a gap in the interval Qo
(t,t + 2p) sothat x,* is consistent with y*, with respect to T
N. Then PAST T

IR T et

1. BEveryx, consistent with x*, withrespecttoN, hasagap  Fig. 5 lllustration demonstrating that for an input spike-train ensembl
intheinterval (¢,t + p). x that satisfies &-Gap criterion, the membrane potential at any point

. . . .. . in time is dependent on at mo#t milliseconds of input spikes iy
2. Every x, consistent with x*, with respect to N, isidenti- before it. Owing to thel-Gap criterion the distance between the end

cal toxo* intheinterval (—oo,t+p),i.e.intothefuture  and start of any two consecutive gaps of lergjiron the output spike-
after timeinstant ¢ + p. train is at most” — T — 2p. Upto the earlier half of &p gap (whose

3. For every t' more recent than (¢ + p), the membrane latest point is denoted k) is dependent on input corresponding to the

. ;- . S B previous2p gap. It follows that the membrane potential:atlepends
potential at ¢/, isa function of spikesin = ¢+ 11) (x")- only on input spikes in the interval of length before it, as depicted,

The upshot of the Gap Lemma and its corollary is tha"d t© the Gap Lemma.

whenever a neuron goes through a period of time equal to
twice its relative refractory period where it has produced
no output spikes it undergoes a “reset” in the sense that its Such input spike-train ensembles also have exactly one
membrane potential from then on becomes independent éPnsistent output spike-train. The interested reader s di
input spikes that are older thafh+ p milliseconds before rected to Proposition 1 in Online Resource B for a formal
the end of the gap. statement and proof of this fact.

Large gaps in the output spike-trains of neurons seem For an input spike-train ensembiethat satisfies &'-
to be extensively prevalent in the human brain. In parts of3ap criterion for a neuron, the membrane potential at any
the brain where the neurons spike persistently, such as @Pintintime is dependent on at ma@smilliseconds of input
the frontal cortex, the spike rate is very low (0.1Hz-10Hz)spikes inx before it, as discussed in Figure 5.
(Shepherd, 2004). In contrast, the typical spike rate of ret ~ With inputs that satisfy th&-Gap Criterion, here is what
nal ganglion cells can be very high but the activity is generWe need to do to physically determine the current membrane
ally interspersed with large gaps during which no spikes ar@otential, even if the neuron has been receiving input since
emitted (Nirenberg et al, 2001). the infinite past: Start off the neuron from an arbitraryestat

These observations motivate our definition of a criterion@nd drive it with input that the neuron received in the past
for input spike-train ensembles afferent on single neurong!’ milliseconds. The Gap Lemma guarantees that the mem-
The criterion stipulates that there be intermittent gaps oPrane potential we see now will be identical to the actual
length at least twice the relative refractory period in at ou Membrane potential, since the membrane potential is guar-
put spike-train consistent with the input spike-train ense anteed to have undergone a “reset” in the ensuing time.
ble, with respect to the neuron in question. As we elaborate The Gap Criterion we have defined for single neurons
in a moment, the definition is set up so that for an inputcan be naturally extended to the case of feedforward net-
spike-train ensemblg that satisfies &'-Gap criterion for ~Works. The criterion is simply that the input spike-trair en
a neuron, the membrane potential at any point in time i$emble to the network is such that every neuron’s input

dependent on at mogt milliseconds of input spikes iy ~ obeys a scaled Gap criterion for single neurons. Figure 6
before it. explains the idea. Formally, the definition proceeds induc-

_ . . tively, starting with neurons of depth 1.
Definition 3 (Gap Criterion for a single neuraonjor T' €

R*, a spike-train ensemblg is said to satisfy ar-Gap  Definition 4 (Gap Criterion for a feedforward networkjn
Criterion'® for a neuronN(«, Y, p, 7, \,m, P : gzvg ) X input spike-train ensembleis said to satisfy &'-Gap Crite-
S ! rion for a feedforward network if each neuron in the network

S,p) — [A, 7]) ifthe following is true: There exists a spike- ™" - I et
train x, with at least one gap of lengttp in every interval satisfies & -7 )-Gap Criterion, when the network is driven by

of time of lengthT — 7" + 2, so thatx, is consistent with x> Whered is the depth of the acyclic network.
X with respect ta\. As with the criterion for the single neuron, the mem-

10 Note that for sufficiently small values @ (in relation toY" and brane potential of the output neuron at any point is depen-

p), nox may satisfy a-Gap Criterion. This is deliberate formulation dent on at mosf” milliseconds of past input, if the input
that will minimize notational clutter in forthcoming definitis. spike-train ensemble to the feedforward network satisfies
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brane potential function. As a result, a spike-train ensem-
ble that satisfies a Gap criterion for one neuron may not
satisfy any Gap Criterion for another neuron. For a feed-
forward network, the problem becomes even more difficult,
since intermediate neurons must satisfy Gap Criteria, and
also produce output spike-trains that satisfy Gap Criferia
neurons further downstream. Furthermore, in order to com-
pare transformations effected by two different networks, w
need to study inputs that satisfy some Gap criterion for both

Fig. 6 Schematic diagram illustrating how the Gap criterion works fo fth f th . th fi fat f fi
the simple two-neuron network on the left. The membrane potaitia or them, for otherwise, the noton or a transiormation may

the output neuron atdepends on input received from the “intermedi- NO longer hold. Now, we sought to ask what transformations

ate” neuron, as depicted in the darkly-shaded region, ovanige Gap
Lemma. The output of the intermediate neuron in the darkly-shesle
gion, in turn, depends on input it received in the lightly-cba region.
Thus, transitively, membrane potential of the output neuranistie-

pendent at most on input received by the network in the ligsiigeed

all feedforward networks with a certain architecture could
not do. For this, we need to characterize inputs that sadisfy
Gap Criterion for all the networks involved, which seems to
be an even more intractable problem.

region. This brings up the question of the existence of another

criterion according to which the set of spike-train ensesabl

is easier to characterize andc@ammon across different net-

a T-Gap criterion. Additionally, the output spike-train is Works. Next, we propose one such criterion and show that

unique. Lemma 2 and its proof in Online Resource B makét consists of spike-train ensembles which are a subset of

precise these facts. those induced by the Gap criteria for all feedforward net-
We thus find ourselves at a juncture where questions w&orks. Loosely speaking, these are input spike-train ensem

initially sought to ask can be posed in a self-consistent-marPles which, before a certain time instant in the past, hade ha

ner. So, looking back at the big picture, we had initially N0 Spikes. The spike-train ensembles satisfying the said cr

wished to view feedforward networks as transformationderion, which we call the Flush criterion, allow us to sidgst

that mapped bounded-length input spike-trains to boundedbe difficult issues just discussed. While this is a purely the

|ength Output Spike trains. However, we found that this no_oretical construct with no claim of biOlOgicaI relevanCE, i

tion was not always well-defined. We then showed that if weSection 7, we prove that there is no loss by restricting our-

restrict the set of input spike-trains so they satisfiedagert Selves to the Flush criterion. That is, not only is a result

criteria, one can correctly speak of output spike-trairat th Proved using the Flush criterion applicable with the Gap cri

such inputs are mapped to, by the feedforward network iterion,every result true with the Gap criterion can be proved

guestion. We also argued that this restricted set of spikdy using the Flush criterion exclusively.

trains encompasses biologically-relevant spiking regime

Thus, feedforward networks can be seen as transformations

tha}t map this restricted_ set. of input spike—tr_ains 'Fo OUtPUk F1ush Criterion

spike-trains. Indeed, this will be the sense in which feed-

forward networks are treated as transformations. Next, Wey,q jqea of the Flush Criterion is to force the neuron to pro-

formahzg thesg observations and define some notation. duce no output spikes for sufficiently long so as to guarantee
Notation. Given a feedforward network/, let Gi; be ot 4 Gap criterion is being satisfied. This is done by hav-
the set of all input spike-train ensembles that satisff-a g 5 semi-infinitely long interval with no input spikes. Bhi
Gap Criterion forV. Let Gy = Uyreg+ Gi- Therefore, g shes» the neuron by bringing it to the resting potential
every feedforward network A" induces a transformation 5 keeps it there for a sufficiently long time, during which
Tn : Gy — S that maps each spike-train ensembl&in it produces no output spikes. In a feedforward network, the
to a unique output spike train in the set of spike-trais  q,sh is propagated so that all neurons have had a sufficiently
Supposg’ C Gu Then, letTy e : G' — S bethe map |50 gap in their output spike-trains. Observe that thelFlus
defined as/y[o/ (x) = Twv (x), forall x € G'. Criterion is not defined with reference to any feedforward

The Gap Criteria are very general and biologically well- network and is just a property of the spike-train ensemble.
motivated. However, given a neuron or a feedforward netye make this notion precise below.

work, there does not appear to be an easy way to character-

ize all the input spike-train ensembles that satisfy a aerta Definition 5 (Flush Criterion) A spike-train ensemblg is

Gap Criterion for it. That is, for a given neuron, whethersaid to satisfy &-Flush Criterion, if all its spikes lie in the
an input spike-train ensemble satisfies a Gap Criteriort for iinterval (0, T'), i.e. it has no spikes upto time instafitand
seems to depend intimately on the exact form of its memsince time instant 0.
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It turns out that an input spike-train ensemble to a neuroimputs for which all the networks satisfy a certain Gap Cri-
that satisfies a Flush criterion also satisfies a Gap criterio terion (though, not necessarily for the saffig so that the
The technical details along with a proof are in Lemma 3 innotion of a transformation is well-defined on the input set,
Online Resource B. for all networks under consideration. Note also tat is

Likewise, an input spike-train ensemble to a feedforwardalways a nonempty set, becaugg contains within it all
network satisfying a Flush criterion also satisfies a Gap criinputs satisfying the Flush criterion. Henceforth, fonhitg
terion for that network, as elaborated in Lemma 4 which isany result that establishes a relationship of the form défine
available in Online Resource B with a proof. above is called @omplexity result. Before we proceed, we

The Flush criterion is a construct made for mathematintroduce some useful notation.
ical expedience and prima facie does not have any biolog- Notation. Let the set of spike-train ensembles of or-
ical relevance. It is a network-independent criterion Whic derm that satisfy the T-Flush criterion hEL. Let F,, =
enables us to circumvent difficulties that working with the( .+ FL. What we have established in the previous sec-
Gap criterion entailed. It will soon become clear why it istion is thatF,, C G, for every feedforward network/ of
a useful construction, when we show that it is equivalent tamrderm.
the Gap criterion insofar as the questions we seek to ask are Next, we show that if one class of networks is more com-
concerned. plex than another, then inputs that satisfy the Flush Crite-
rion are both necessary and sufficient to prove this. That is,
to prove this type of complexity result, one can work ex-
clusively with Flush inputs without losing any generality.

Having laid th dwork. in thi . i d f_This is not obvious because Flush inputs form a subset of
_qvmg a . € grounawork, |_n 'S sec_|on, wese “F’ a9€Mihe more biologically well-motivated Gap inputs. The next
nition that will allow us to ask if there exists a transforimat

that wwork of tai hitect Id effect that lemma formalizes this equivalence. Note that the statement

athoknefw%r.ﬁo atcer ?}T a:c lec ulae Ictqu € ec.tm? ¥f the lemmadis substantially identical to that of Definitign
network of a different arcnitecture could. 11s conven except that the input spike-train ensembles in the lemma be-
formulate the definition in the following terms. Given two

| Y of networks with th d el ._low satisfy the Flush criterion, as opposed to the ones in
classes: of Networks wi € second class encompassingy .gnition 6 which satisfyG,, the set of input spike-train

thﬁ fws’i, Wefask |1;there IS ?Setwo;k n tgi second i:las nsembles that satisfy a Gap Criterion for all the networks
whose transformation cannot be performed by any ne Worugder consideration.

in the first class. That is, does the second class possess
larger repertoire of transformations than the first, giving Lemma 5 (Equivalence of Flush and Gap Criteria with re-
more complex computational capabilities? spect to Transformational Complexitybet X'y and Y5 be
two sets of feedforward networks, each network being of or-
C 5. Then, X5 is more complex than 3y

Fm 7

7 Transformational Complexity

Definition 6 (Transformational Complexity)Let ¥; and s
X5 be two sets of feedforward networks, each network bein&Ier m, W'th_E L f
of orderm, with &y C Y. DefineGiz = (ycx, 91 The |7f-and only if IN" € X such that VA € Xy, Ty
setY, is said to banore complex than X1, if there existsan 'V

N € Xy such thatforalV € 21, T [y, # Tloss- Proof sketch. A full proof is available in Online Resource
A couple of remarks about the definition above are in orderB; here we sketch the intuition behind the proof.

Firstly, X, being a proper subset of,, does not necessarily Showing that Flush inputs are sufficient is the easier half
imply that the that the set of transformations effected by ne of the proof. If a complexity result can be shown using Flush
works in X} is also a proper subset of those effected®hy  inputs, it follows that it holds for Gap inputs as well, since

In particular, it could be the case that the set of transfermar,, C G;,. To show that the existence of Flush inputs is
tions effected by>,; is exactly the same as that effected bynecessary, we assume a complexity result proved using Gap
X5, even thoughY'; is a proper subset of’,. Indeed, thisis  inputs and construct Flush inputs such that the result can be
what is demonstrated by the result of Section 9, which showshown using those Flush inputs alone. Now suppd$ec
in the context of the present neuron model that even thought, be the network such that no network Iy effects the
the set of depth-two feedforward networks is a strict subsesame transformation &¢’, when the domain is restricted to
of the set of all feedforward networks, both these sets efihe setG,,. Now, consider arbitrary;" € X,. There must
fect the same class of transformations, namely those teat agxist ay € G2 such thatTa|-, (x) # Tal=, (x). By
causal, time-invariant and resettable. Secondly, obgbate definition, thisy satisfies &l -Gap Criterion for\" and a
while comparing a set of networks, we restrict ourselves tqy;,-Gap Criterion for\”. Let T = max (7}, T»). The claim

11 The classes of networks could correspond to ones that contain ar that ify IS_ Cl_'lt up into “ChUhka’ OT lengtlT’, where e?Ch
networks with specific network architectures, although fergirpose - chunk” satisfies a 2T-Flush criterion, thevi and V" will
of the definition, there is no reason to require this to be tise.ca map at least one of those chunks to different output spike

Fm*
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T 0 Before establishing complexity results, we point out that

: | OUTPUT itis straightforward to construct a transformation thatroat

| | be effected by any feedforward network. One of its input

: : : : INPUT spike-train ensembles with the prescribed output is shown
PAST f in Figure 7(a). For largerT, the shaded region is simply
(a) Example of a transformation that no feedforward netdfadn ef- replicated over and over again. Informally, the reason this
fect. The shaded region is replicated over, to obtain mapgorgarger transformation cannot be effected by any network is that,
and larger values df". for any network, beyond a certain value @f, the shaded

region tends to act as a “flush”, erasing “memory” of the

I OUTPUT  first input spike. When the network receives another input
| L spike, it is in the exact same “state” it was when it received
I T2 eur thefirstinput spike, and therefore cannot produce an output
1 |ll Il n spike after the second input spike.
oAST o 1o Next, we prove that the set of feedforward networks with
(b) A transformation that no single neuron can effect, that svomdt at most two neurons is more complex than the set of single
with two neurons can. neurons. The proof is by prescribing a transformation which
cannot be done by any single neuron. We then construct a
network with two neurons that can indeed effect this trans-
formation. Note that in the statement of the theorem below,

_ _ ) ~m stands for the number of input spike trains.
trains, since the output in the latter half of the chunk iside

tical to that produced by the corresponding segmen.of Theorem 1. Supposem > 2. Let 2 be the set of feedfor-
This process of “cutting up”, when “completed” for each ward networks with at most two neurons that each receive

N € X yields a subset of Flush inputs, using which thean input spike-train ensemble of order /. Then, 2 is more
complexity result can be established. O  complexthan the set of single neurons of order m.

Fig. 7

Assured by this theoretical guarantee that there is no los8roof. We first prescribe a transformation, prove that it can-
of generality by doing so, we will henceforth only work with not be effected by a single neuron and then construct a two-
inputs satisfying the Flush Criterion, while faced with the neuron network and show that it can indeed effect the same
task of proving complexity results. This buys us a great deafransformation.
of mathematical expedience at no cost. From now on, unless \We first prove the result forn = 2 and later indi-
qualified otherwise, when we speak diransformation, we  cate how it can be extended for larger valuesofLet the
mean a map of the foriii : F,, — S that maps the set of two input spike-trains in each input spike-train ensemble,
Flush input spike-train ensembles to the set of output spikewhich satisfies a Flush Criterion g and I,. Figure 7(b)
trains. illustrates the transformation. Informally; has regularly-
spaced spikes starting after time instanintil 0. I, has two
spikes, with the first one, loosely speaking, in the “middle”
of (0,T") and the second one at the end, i.e. right before time
. . . . .__instant0. An output spike is always prescribed after the sec-
In this section, we establish some complexity resultstFirs o

. . . ] ) ond spike inls occurs, and not elsewhere. For largérthe
we show that there exist spike-train to spike-train transfo ) : S

) number of spikes oif; increases so as to maintain the same

mations that no feedforward network can effect. Next, we . . . . .
regular spacingls, in contrast, still has just two spikes, the

L . first one roughly in the middle and the second in the end. For

network consisting of two neurons can. After this, we prove

. . the sake of exposition, we call the distance between consec-
aresult which shows that a class of architectures that share P

. . S utive spikes on/;, one time unit and we number the spikes
certain structural property also share in their inabilityef- . . . :
. . . ) of I; with the first spike being the oldest one.
fecting a particular class of transformations. Notablyjlevh : S .
. . . o More precisely, the transformation is prescribed for a
this class of architectures has networks with arbitrarignsn .
L subset ofF,,,, whose elements are indexed by 1,2, - --.
neurons, we show a class of networks with just two neuronlgi ure 7(b) illustrates the transformation, foe 2. Theith
which can effect this class of transformations. The intexks g '

reader is directed to Online Resource B for some technic('!l?plJt spike-train ensemble in this subset satisfigsflush

. . . .. criterion, whereT' = 4i + 3 time units. In theith spike-
remarks concerning the mechanics of proving complexity . . Co : .
o rain ensemblel; has spikes at time instants at which spike
results that are not central to the exposition here.

numbers2i + 1 and4i + 3 occur inI;. Finally, the output
12 Recall that the neurons considered in this work are deterriginist  Spike-train corresponding to thth input spike-train ensem-

8 Complexity results
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ure 8(b). The generalization for largers straightforward.

(a) No All inputs are excitatoryNV; is akin to the neuron described
I in Figure 1, in that while the depolarization due to a spike
I in I; causes potential to cross threshold, if, additionally, the

previous output spike happened one time unit ago, the asso-

M ciated hyperpolarization is sufficient to keep the membrane
potential below threshold now. However, if there is a spike
(b) from I, also at the same time as fraf, the depolarization
| ouTPUT is sufficient to cause an output spike, irrespective of if¢he
I OF N2 was an output spike one time unit ago. Theorrespond-
I I 11 I | pecavep  ing to N is shorter thar time unit. FurtherN, produces a
1 1 1 1 1 T N1 OuTPUT ! . . . .
spike if and only if all three of its afferent synapses reeeiv
I I I I I I ouTPUT spikes at the same time. In the figuré, spikes after times
' 1,3, 5. It spikes afte6 because it received spikes both from
I DIE:AYED I, and I, at that time instant. Subsequently, it spikes after
| | 8 and10. The only time whereinV, received spikes at alll
1 T o three synapses at the same time iglatafter which is the
I [N (NN (NN NN (NN NN NN N NN prescribed time for the output spike. The generalization fo
FURLETRLEYL VI PR PR O PR P T largeri is straightforward.
PAST For largerm, to construct a transformation that cannot
Fig. 8 (a) The network that can effect the transformation described inbe done by a smgle neuron but can ,be’ by a two-neuron net-
Figure 7(b). (b) Figure describing the operation of this rukw work, one can just have the same input/asr I, on the
extra input spike trains and the same proof generalizes eas-
ily. O
ble has exactly one spike aftéthe time instant at whiclf, The previous result might seem to suggest that the more
has spike numbeti + 3. the number of neurons (and connections between them) the

Next, we prove that the transformation prescribed abovgyrger the variety of transformations possible. The nert-co
cannot be effected by any single neuron. For the sake Qfjexity result demonstrates, on the contrary, that thecstru
contradiction, suppose it can, by a neuron with associatefre of the network architecture is crucial. That is, we can
T andp. Let max(7’, p) be bounded from above bytime  gnstruct network architectures with arbitrarily largemu
units. We show that for > [£7], theith input spike-train en-  per of neurons which cannot perform transformations that a
semble cannot be mapped by this neuron to the prescribg,q-neuron network with simple neurons can.

output spike train. For = (51, consider the membrane po-  First, we define the structural property that characterizes
tential of the neuron after the time instants correspontbng this class of architectures.

the (k 4 1)th spike number anfRk + 3)rd spike number of I
I,. At each of these corresponding time instants, the inpuPef'n't'on 7 (Path-plural Network) A feedforward network

received in the pagt time units and the output produced by of Ordel’m.IS calledpath-pl ural- If for every set ofim paths,
) ) : where theith path starts aith input vertex and ends at the
the neuron in the pagttime units are the same. Therefore,

the neuron’s membrane potential must be identical as welf?mput vertex, the intersection of the paths is exactly the

However, the transformation prescribes no spike in one 0?utput vertex.
the first time instants and a spike in the second, which is a Every feedforward network in which all the inputs aren’t
contradiction. It follows that no single neuron can effést t afferent on every neuron, must have embedded within it a
prescribed transformation. path-plural network. For this reason, path-plural network
We now construct a two-neuron network which can carryare an important and ubiquitous class of feedforward net-
out the prescribed transformation. The network is shown ivorks. How large such networks are in the brain remains to
Figure 8(a).l; and I, arrive instantaneously a¥,. I; ar- be seen, and this will become clearer as we get more and
rives instantaneously &f; but I, arrives atN, after adelay Mmore data from the connectomics efforts. But, it is conceiv-
of 1 time unit. Spikes output byV; take one time unit to able that such networks exist in feedforward pathways that
arrive atN,, which is the output neuron of the network. The that converge onto networks that, for example, integrate in

functioning of this network foi = 2 is described in Fig- formation from multiple sensory modalities.
We now state and prove the complexity result.

13 strictly speaking, the output spike happendat- 3 + ¢, where
¢ > 0is a small real number. Henceforth whenever we say an outpul N€orem 2. For m > 3, let Xy be the set of all path-plural
spike isafter a certain time instant, we mean it in this sense. feedforward networks of order m. Let X5 bethe union of X,
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Fig. 9 Atransformation that no feedforward network of or@ewith a (b)
path-plural architecture can effect. OUTPUT
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DELAYED
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with the set of all two-neuron feedforward networks of order I oF N
m. Then, X5 ismore complex than Xy . L1 L1

11 1 1 1 Ip
Proof. We first prescribe a transformation, prove that it can- ! ULl | ULl |
not be effected by any network if; and then constructa ., e ' e '
two-neuron netwqu and show that it can indeed effect th(?:ig. 10 (a) Network that can effect the transformation described in
same transformation. Figure 9. (b) Figure describing the operation of this network
We prove the theorem for, = 3; the generalization for
largerm is straightforward. The following transformation is

prescribed forn = 3. Let the three input spike-trains in each T milliseconds before time indet%m are the same. This is
input spike train ensemble, which satisfies a Flush Criterio straightforward to verify.

be I, I and ;. As before, we will use regularly spaced v now construct a two-neuron network that can effect
spikes; we call the distance between two such consecutiis yransformation. The construction is similar to the one
spikes one time unit and number these spike time instant$saq in Theorem 1. Fan — 3. the network is shown in

with the oldest being numbered 1; we call this numberingﬁgure 10.1;, I, and I5 arrive instantaneously a¥; and
the spike index. Again, the transformation is prescribecfo No. Spikes o,utput byV, take two time units to arrive a¥,
S‘Jbset 0?:"’/’ whose elements are 'rPdeX?d by 1,2, "+ which is the output neuron of the network. The function-
Figure 9 illustrates the transformation for= 2. Theith iy of thig network fori = 2 is described in Figure 10(b).
Input spike-train ensemble in the subset satisfigsElush 1 generalization for largeris straightforward. All inputs
Criterion for 7" = 4im time units. The firsk; time UNits 56 eycitatory.; is akin to the the neurotV, used in the
have spikes o, spaced one time unit apart, the néxon  anwork in Theorem 1 except that that periodic input may
I? and S0 forth. ln, addltlop, at spike ind&m, I, h.as.a _arrive from any one ofy, I or I3. As before, if two in-
single spike. The input spike pattern from the beginning i, s spikes arrive at the same time, as in spike irtiex, the
repeated once again for the latirm time units. The pre-  yenqarization is sufficient to cause an output spik&inir-
scribed output spike-train has exactly one spike aﬁere;p'krespective of if there was an output spike one time unit ago.

index4im. _ ) Again, theY corresponding taV, is shorter than time unit
Next we prove that the transformation prescribed abovg,, N, produces a spike if and only if three of its afferent

cannot be effected by any network k. For the sake of = gynapses receive spikes at the same time instant. As before,
contradiction, assume that there exists a netwdrkc X the idea is that at timim, N», receives two spikes, but not

that can effect the transformation. L&tand p be upper g gpike fromn,, since it is “out of sync”. However, at time
bounds on the same parameters over all of the neurons m, additionally, there is a spike frorv, arriving at Na,

I3

N and Igtd be the.depth aolV. By construction of, eVery  which causesV, to spike. O
neuron inN that is afferent on the output neuron receives
input from at mosin — 1 of the input spike-trains; for, oth- To conclude, what we have demonstrated in this section

erwise there would exist a set ot paths, one from each is that, for certain classes of networks, just by knowing the
input vertex to the output neuron, whose intersection would@rchitecture of the network, we can rule out computations
contain the neuron in question. The claim, now, is that fothat the network could be doing. All we assumed was that
i > % + p, the output neuron ol has the same mem- the neurons in the network satisfy a small number of elemen-
brane potential at spike inde&ém and4im, and therefore tary properties; notably these results do not require knowl
either has to spike at both those instants or not. Intuitjivel edge of detailed physiological properties of the neurons in
this is so because each neuron afferent on the output neurtime network. This, in itself, is somewhat surprising dud t
receives a “flush” at some point aftgim, so that the output intuitively-appealing expectation that network struetoray

produced by it milliseconds before time indeXim and  not impose as strong a constraint as neurophysiology inso-
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far as the computational ability of a network is concernedtransformation in this “nice” subset can in fact be effected
In the next section, however, we show that this intuition isby a feedforward network of depth twb Together, this im-
sound in some cases by proving that there are limits to thplies that, for every transformation that can be effected by
constraints imposed by network structure in the presence déedforward network, there exists a feedforward network of
very limited information on the physiology. depth two that can effect exactly that transformation.
The interested reader is directed to Online Resource C,

which is a 24-minute video that provides an intuitive oiglin

9 Limits to constraints imposed by network structure of the results in this section using animations.

The main thrust of this work, thus far, has been in demon-

strating that connectomic constraints do indeed restiiet t Technical structure of the proof

computational ability of certain networks, even when we do

not assume much about the physiological properties of theifhe main theorem that we prove in this section is the
neurons. As one might expect, we should be able to get befollowing.

ter mileage, so to speak, if we had more elaborate informa-

tion on the response properties of the individual neuronsTheorem 3.1f T : F,, — S can be effected by a feed-

Convers.eI)_/, itis logical to expect. that there might be fundaforwar d network, then it can be effected by a feedforward
mental limits to what can be said about the computational

properties of networks, given very limited knowledge of thenetwork of depth two.

neurophysiology of its neurons. In this section, we proveThis theorem follows from the following two lemmas which

this to be the case. In particular, we show that the small sefre proved in the two subsections that follow:

of assumptions made about our model neurons lead to the

absence of connectomic constraints on computation for theemmas. If 7 : F,,, — S can beeffected by a feedforward

class of feedforward networks of depth equal to two. Moreetwork, then 7(-) is causal, time-invariant and resettable.

precisely, it turns out that there does not exist a transfiorm Lemma 7. If T : F, — S is causal, imeinvariant and

tion t.hat cannot be performed by any network of deptfﬂMo resettable, then it can be effected by a feedforward network

that in turn can be effected by another network (of a d|ffer-O]c depth two.

ent architecture). What this result implies is that oweds

to make further assumptions on the properties obeyed by the

model neurons, before connectomic constraints on this clas

of networks appear. 9.1 Causal, Time-Invariant and Resettable Transformation
So, how does one prove that there does not exist a trans- ) ] i ) ]

formation that cannot be performed by any network of deptin this section, we first define notions of causal, time-

two that in turn can be effected by another network? Equival_nvarlant and resgttabl_e trgnsformaﬂb‘hs‘l‘ ransformations _

lently, we need to prove that given an arbitrary feedforwardhat are causal, time-invariant and resettable form atstric

network, there exists a feedforward network of depth twosubset of the set of all transformations. We then show that
that effectsexactly the same transformation. transformations effected by feedforward networks always

The difficulty in proving that every feedforward net- lie within this subset. This is the relatively easy part of th

work, having arbitrary depth, has an equivalent network ofroof. The next subsection proves the harder part, namely

depth two, appears to be in devising a way of “collaps-that every transformation in this subset can indeed be ef-

ing” the depth of the former network, while keeping the fected by a feedforward network of depth equal to two.
effected transformation the same. Our proof actually does nformally, acausal transformation is one whose current
not demonstrate this head-on, but instead proves it to be tf@/tPut depends only on its past input (and not current or
case indirectly. The broad attack is the following: Conside future input). Abstractly, it is convenient to define a cdusa
the set of transformations spanned by the set of all feed@nsformation as one that, given two different inputs éneat
forward networks. Recall that this is a proper subset of thédentical until a certain pointin time, also have their aug)
set of all transformations, since we had shown a transfordccording to the transformation, be identical up to (atteas
mation that no feedforward network could effect. The idedhe same point.

IS to start O.ﬁ with a certain "nice” subset of the. set of al 15 As a by-product, the proof also ends up providing a complete cha
transformations and show that every transformation edtict acterization of the sét of transformations spanned by the setfetdt

by feedforward networks certainly lies within this subset.forward networks equipped with neurons of the present atistradel,

Thereafter, we prove, by providing a construction, thatyve which turns out to be exactly this “nice” set.
16 Recall that when we say transformation, without further quzlifi
14 equipped with instances of our model neurons tion, we mean one, of the forf : 7, — S.
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Definition 8 (Causal TransformationA transformatior7 :  Lemma 7. If 7 : F,, — S iscausal, time-invariant and
Fm — S is said to becausal if, for every x1,x2 € Fm, resettable, then it can be effected by a feedforward network
With S o)X1 = Z(t,00)X2, fOr somet € R, we have of depth two.

i) T(X1) = Zjroo) T (x2)- Before diving into the proofs, we offer some intuition.

As in signals and systems theorytjme-invariant trans- Suppose we had a transformatipn F,, — S which is
formation is one which always transforms the time-shifted causal, time-invariant and resettable. For the moment, pre
version of an input, to a time-shifted version of its corre-tend it satisfies the following property: There exist consta
sponding output. To keep the definition sound, we also neegized input and output “windows” so that, for every input
to ensure that the time-shifted input, in fact, also sasgfie  spike-train ensemble satisfying a flush criterion, jusegiv
Flush criterion. knowledge of spikes in those windows of past input and out-

Definition 9 (Time-Invariant Transformation)A transfor- ~ Put, one can unambiguously determine, at any point in time,
mation7 : F,, — S is said to betime-invariant if, for  if the transformation prescribes an output spike or not-Int
everyy € F,, and everyt € R with o(x) € Fyn, we have itively, it seems reasonable that such a transformatiorbean
T(oe(x)) = ot (T(x)). effected by a single neurdhby setting thel” and p of the
neuron to the sizes of the input and output windows men-
tioned above.

Of course, one easily sees that not every transforma-
tion that is causal, time-invariant and resettable sasisfie
aforementioned property. That is, there could exist twe dif
Ferent input instances, whose past inputs and outputs are

identical in the aforementioned windows at some points in
time; yet in one instance, the transformation prescribes an
Definition 10 (IW-Resettable TransformatianfFor W € output spike, whereas it prescribes none in the other. thdee
R*, a transformation7” : F,, — S is said to belW-  the two input instances must differ at some point in the past,
resettable if, for every x € 7, which has a gap in the in- for otherwise the transformation would not be causal. There
terval(t,t + W), for somet € R, we have=_, 47 (x) = fore, in such a situation, it is natural to ask if a single “in-
T(E(—00,1X)- termediate” neuron can “break the tie”. That is, if two input

Definition 11 (Resettable Transformatianp transforma-  instances differ at some point in the past, the output of the

tion 7 : Fm — S is said to beresettable if, there exists a intermediate neuron since then, in any interval of time of

W € Rt, so that it isW-resettable. lengthU, must be different in either case, whérés a fixed
. constant. This is so that a neuron receiving input from the
Next, we prove that every transformation that can be ef- ginp

. . . - intermediate neuron catisambiguate the two inputs, were
fected by a feedforward network is causal, time-invariant 9 P

. ..an output spike demanded for one input but not the other.
and resettable, in the context of our neuron model and 'tEJ . )
assumptions nfortunately, this exact property cannot be achieved lyy an

single “tie-breaker” neuron because every transformation
Lemma®é. If T : F,, — S canbeeffected by afeedforward  duced by a neuron is resettable. In other words, the problem
network, then 7°(+) is causal, time-invariant and resettable. s that, suppose two input instances differ at a certaintpoin
in time; however, since then, both have had an arbitrarily
large input gap. The input gap serves to “erase memory”
in any network that received it and therefore it cannot dis-
ambiguate two inputs beyond this gap. Now, fortunately, it
the neuron only “looks” at the recent past and not the preser(f{oes not ha_ve o, since this gap also causes a “reset_” in the
transformation (which is resettable). That is, if such dn-ar

or the future to determine membrane potential. Thé&d is . : ; .
. trarily large gap were present in the input, the transforomat
resettable follows from Axiom (3) of the neuron and the Gap _
would not afterward demand an output spike in one case and

Lemma. For a feedforward network, the proof proceeds b o L
o . o0 output spike in another. This is because Wisresettable
mathematical induction on the depth of the network. A full . 1
and therefore cannot make such demands, for input'§aps

roof is provided in Online Resource B. O . .
P P larger thari?’. Thus, we can make do with a slightly weaker
condition; that the intermediate neuron is only guaranteed

A resettable transformation is one for which there exists
a positive real numbéi/, so that an input gap of the form
(t,t + W) “resets” it, i.e. output beyontlis independent of
input received before it. Again, abstractly, it becomes-con
venient to say that the output in this case is identical to th
produced by an input which has no spikes befgrbut is
identical to the present input thereafter.

Proof sketch. If 7 : F,, — S can be effected by a single
neuron it is relatively straightforward to verify thdi(-) is

causal, time-invariant and resettable. That it is causdl an
time-invariant follows from the fact that the(-) function of

9.2 ConStrUCthn Of. a depth two feedforward network f‘?r 17 strictly speaking, it turns out that this is not true; axiom 2yrha
every causal, time-invariant and resettable transfoomati  ig|ated.

_ _ _ 18 which we call a “reset gap” from now on, for the sake of exposi-
In this subsection, we prove the following lemma. tion.
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other hand, presents some subtleties. Now, in additiortio se
o ting membrane potential to threshold at the aforementioned
points, in order to satisfy Axiom (2), we would also need to
set it to hit threshold, when the input window has the same
pattern and the output window is empty instead. However,
with this assignment, we need to then show that no spuri-
ous spikes are generated. This takes a little work and again
uses the “tie-breaker” condition of the intermediate nauro

Fig. 11 Th twork hitect fi der t feedf d net- . . . .
19 e network architecture for (order two) feedforward ne J. The full proof is available in Online Resource B. [

works of depth two equipped with model neurons described itiGec
3 that can effect any causal, time-invariant and resettabhsftvtema-

tion. The next proposition shows that one can always con-
struct an intermediate neuron that satisfies the said “tie-

breaker” condition.
break the tie, when it is required to do so. That is, suppose

there are two input instances, whose outputs according tgroposition 3. Let 7 : F, — & be causal, time-

T : F, — S are different at certain points in time. Then, invariant and resettable. Then there exists a neuron J and
the corresponding inputs are different too at some point it/ € RT so that for al ¢, € R and xi,x2 €
the past with no reset gaps in the intervening time and therefm With Zo04, (T (x1)) #  Z00t,(T (x2)), we have
fore the intermediate neuron ought to break the tie. Addi<(0,v) (04, (Ts(x1) U x1)) # Z0,0) (04, (Ts(x2) U X2)),
tionally, for technical reasons that will become clearlate Where7; : 7, — S issuch that for each x € 7, T5(x) is
we stipulate that the outputs of the intermediate neuron igonsistent with x with respect to J.

the precedindg/ milliseconds are guaranteed to be different,

only if the inputs themselves in the pdétmilliseconds are  Proof idea. The basic idea is to “encode”, in the time differ-
not different. ence of two successive output spikes, the positions ofeall th

The network we have in mind is illustrated in Figure 11, input spikes that have occurred since the last input gapeof th
for m = 2. In the following proposition, we prove that if the form (¢,t + W), whereT (-) is W-resettable. Such pairs of
intermediate neuron satisfies the “tie-breaker” conditibn output spikes are produced once evemyilliseconds, with
luded to above, then there exists an output neuron, so that tthe time difference within each pair being a function of the
network effects the transformation in question. Thereafte time difference within the previous pair and the input spike
in the subsequent proposition, we provide a construction foencountered since. Intuitively, it is convenient to thirikhas
the intermediate neuron that satisfies this condition. By waencoding as one from which we can “reconstruct” the entire
of notation, recall thaky(-) is shorthand foE7 o (-) past input spike-train ensemble after the last reset gapein t
input. We first describe the encoding function for the case of
a single input spike-train after which we indicate how it can
be generalized.

So, suppose the time difference of the successive spikes
output byJ lies in the intervall0, 1). Define the encoding
function assg : [0,1) x S(O,p] — [0, 1), that takes in the old
encoding and the input spikes in the pashilliseconds to
produce the new encoding, which is outputbgs the time
difference between a new pair of spikes. The numbéer
chosen to be such that there are at nsospikes in any in-
terval of the form(t, ¢ + p]. We now describe howy (e, x) is
computed, giver € [0,1) andx = (z*,22,...,2%), such
Ihat each spike time ir lies in the interval0, p]. Lete have
a decimal expansidf, so thate = 0.c;s,c252¢353 - - - . Ac-
cordingly, letc = 0.cicacs - - ands = 0.s18283---. cis a
eal number that encodes the number of spikes in each inter-
al of lengthp encountered, since the last reset. Since each

Proposition 2. Let 7 : F,, — S be causal, time-invariant
and resettable. Let J be a neuron with 7; : F,, — S, s0
that for each x € F,, 75(x) is consistent with x with re-
spect to J. Further, suppose there existsa U € R* so that
for all ti,to € R and X1, X2 € Fm with 500'751 (T(Xl)) 75
Z001,(T(x2)), we have Zu(o (T3(x1) U x1)) #
Z0.0) (04, (T3(x2) U x2))-

Then, there exists a neuron O, so that for every xy € F,,.,
T (x) isconsistent with 7;(x) Ll x with respect to O.

Proof sketch. The straightforward way for the neur@nto

effect 7() is to determine the points of time wherein an
output spike is prescribed and set its membrane potenti
function to hit threshold at those instances. Since theareur
J essentially “disambiguates” the input, this assignment ca
be done without conflict. However, we also need to show
that doing this does not violate any of the three axioms oY

our abstract model, for the neuréh Axiom (1) follows
easily from the fact that the co-domain f(-) is S. Ax-
iom (3) takes some work to show and uses the factTHat

interval of lengthp has betweer) and 8 spikes, the digit

19 Whenever we say decimal expansion, we forbid decimal expan-
sions with an infinite number of successi®s. With this restriction,

is causal, time-invariant and resettable. Axiom (2), on thesach real number has a unique decimal expansion.
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they encode different “histories” of input spikes. The gxce

tion is if the input spike-train ensembles differed onlyhe t
OUTPUT of J pastU milliseconds. In this case, the difference is commu-
nicated toO directly by .

Finally, we ought to remark that the above is just an in-
formal description that glosses over several technicaildet
contained in the full proof, which is available in Online Re-
w source B. O
Fig. 12 This figure illustrates the operation of the intermediate aeur . . . .

J. Supposex € F, is an input spike-train. Let its oldest spike e 1 Ne preceding two propositions thus imply Lemma 7 which

milliseconds ago. Themproduces a spike at tiff” — p and atevery  together with Lemma 6 implies Theorem 3.

T — kp, for k € Z*, unless in the previous milliseconds to when . . . .

it is to spike, there is a g&pof the form (¢, ¢ + W). For the sake of Lemma 7. If 7 : F, — Siscausal, time-invariant and
exposition, let's call these the “clock” spikes. Now, supposediea  resettable, then it can be effected by a feedforward network
gap of the form(¢, ¢ + W) in the input and there is an input spike at of depth two.

time ¢, then the neuron spikes at time- p and everyp milliseconds

thereafter subject to the same “rules” as above. These clock spikes Theorem 3. If T : F,, — S can be effected by a feed-

followed by “encoding” spikes, which occur at legstilliseconds af-  fgr\ward network, then it can be effected by a feedforward
ter the clock spike, but less than+ » milliseconds after, where is network of depth two.

greater than the absolute refractory periedAs expected, the posi-
tion of the current encoding spike is a function of the timeatiéhce Corollary 2. Theset of all feedforward networksisnot more

between the previous encoding and clock sgikasd the positions of
the input spikes in the milliseconds before the current clock spike. complex than the set of feedforward networks of depth equal

The output of the encoding function is, in effect, approgfiascaled  tO two.
to “fit” in this interval of lengthr; the details are available in the proof.

INPUT

PAST

Incidentally, Lemma 6 and 7 also lead to a full char-
acterization of the class of transformations effected thy al
feedforward networks equipped with neurons obeying the

9 is used as a “termination symbol”. So, for example, supupstract model of Section 3. This is formalized in the next
pose there have beehnintervals of lengthp, since the last  thegrem.

reset with5, 0, 8 and2 spikes apiece respectively, ther= )
0.8059 and¢’ = 0.28059, wherec’ is the “updated” value of 1n€orem 4. Atransformation 7 : ., — S can be effected
c. Likewise, s is a real number that stores the positions of all?y & feedforward network if and only if it is causal, time-
input spikes encountered since the last reset. Let each spikVariant and resettable.

time be of the formy® = 0.z zix} - - - x 109, for appropriate

¢, whose value is fixed for a given Then the updated value Directionsfor further constraining the present model

of siss’ = 0.xlz? - aksixlz?. . 2ksy---. Suppose the
¢ ands’ obtained above were of the foreh= 0.c{ chc - - -
ands’ = 0.s)shss -+ -, theneg(e,x) = 0.¢)s{chsh - --. Ob-

The results of this section imply that we need to add new
properties to further constrain our model neurons, in or-
serve that the decimal expansion constructedsgly, x) der for complexity result.s involving feedforward networks_
cannot have infinitely many successi®, for ¢’ has only of depth two to be manifested. There are a number of di-

a finite number of non-zero digits. Suppose the input were SCtions that one could take. One is that spike-times in the
spike-train ensemble of ordsr, then for each spike-train an present model are real numbers. When stochastic variability

encoding would be computed as above and in the final steﬂ? neurons is taken into account, this assumption is no longe

them real numbers obtained would be interleaved togethefrUe- Also, we did not assume that the membrane potential

so as to produce the encoding. changes smoothly with time, which would be a reasonable
Given knowledge of the encoding function, Figure 12assumption to add. And, finally, an assumption consistent

briefly describes how works. The claim then is that if two with Dale’s princip!e, that each neuron has eithe_r an ?XCi'
input spike-train ensembles are different at some poirtt wit taf:ory effeﬁt oln a|r|1 |t|s posrtfyr;gptm. heurons or an inhilyito
no intervening “reset” gaps, then the outputiah the past effect might also help in this direction.

U milliseconds, wherd/ = p + ¢ + r will be different.

Intumv_ely, this is becal_Jse_ the difference between_theslat 10 Discussion

encoding and clock spike in each case would be different, as

20 | e.p milliseconds after time instarl There has been some debate about how useful data from
2L We setV’ > p to force a spike af” — p. the connectome projects might be in advancing a mechanis-

22 ynless the present clock spike is the first after a reset gap in thiC understanding of computation occurring in the circuits
input. of the brain. One of the main type of arguments that has
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been made against their utility is that, since these prejecttional ability. While technical issues in electron microggo
only?® seek to ascertain the wiring diagram, without giving (Denk et al, 2012) have so far stood in the way of mapping,
us detailed physiological information, it is not clear whatfor example, distributions of ion-channels and neurotrans
we might learn from this data alone, especially for networkamitter and neuromodulator receptors in neurons, it is con-
whose high-level function is not known. While itis acknowl- ceivable that such hurdles may be overcome in future. If
edged that network architecture places constraints on whaticcessful, these or other advances in conjunction with the
a network can compute (Kleinfeld et al, 2011; Denk et alwiring diagram could provide useful information to help us
2012), the nature and scope of these constraints have rease out pertinent constraints on the computational dapab
mained poorly understood. Our goal with this work was inities of these networks.
asking, on one hand, if we can deduce non-trivial examples |n this work, as a first step, we have aimed to demon-
of computations that a netwowrould not be doing, given  strate specifiexamples of computations that a network can-
just the knowledge of its architecture and assuming thatot accomplish, given its architecture. The more ambitious
the neurons obey some elementary properties. On the othgbal would be the ability to have an exact characterization
hand, we asked if there are fundamental limits to what can bef the set ofall computations that a given neural circuit can-
said, given just this information. We examined this questio not perform, given knowledge of its architecture, to the ex-
for the case of feedforward networks equipped with neurongent that a given incomplete knowledge of the physiological
that obeyed a deterministic spiking neuron model. We firsproperties of its neurons will allow. This is not necessaril
set the stage by creating a mathematical framework in which goal that is out of reach. Even in the present work, we
this question could be precisely posed. Crucially, we néedehave obtained such an exact characteriz&tiofithe set of
to make precise what computation exactly meant in this conall computations that the set of feedforward networks canno
text. This took a fair bit of work and led us to the view of accomplish, given the set of properties that our model neu-
feedforward networks as spike-train to spike-train transf rons are presently assumed to obey. Therefore, in principle
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