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Abstract Several efforts are currently underway to decipher
the connectome or parts thereof in a variety of organisms.
Ascertaining the detailed physiological properties of allthe
neurons in these connectomes, however, is out of the scope
of such projects. It is therefore unclear to what extent knowl-
edge of the connectome alone will advance a mechanistic
understanding of computation occurring in these neural cir-
cuits, especially when the high-level function of the said cir-
cuit is unknown. We consider, here, the question of how the
wiring diagram of neurons imposes constraints on what neu-
ral circuits can compute, when we cannot assume detailed
information on the physiological response properties of the
neurons. We call such constraints – that arise by virtue of
the connectome –connectomic constraints on computation.
For feedforward networks equipped with neurons that obey
a deterministic spiking neuron model which satisfies a small
number of properties, we ask if just by knowing the archi-
tecture of a network, we can rule out computations that it
could be doing, no matter what response properties each of
its neurons may have. We show results of this form, for cer-
tain classes of network architectures. On the other hand, we
also prove that with the limited set of properties assumed
for our model neurons, there are fundamental limits to the
constraints imposed by network structure. Thus, our theory
suggests that while connectomic constraints might restrict
the computational ability of certain classes of network ar-
chitectures, we may require more elaborate information on
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the properties of neurons in the network, before we can dis-
cern such results for other classes of networks.

Keywords Spiking neurons· Connectomics· Feedforward
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1 Introduction

Recent remarkable experimental advances (Denk and
Horstmann, 2004; Hayworth et al, 2006; Knott et al, 2008;
Mishchenko et al, 2010; Turaga et al, 2010; Helmstaedter
et al, 2011; Mikula et al, 2012) have brought the prospect
of ascertaining the connectome or parts thereof closer to
reality (Chklovskii et al, 2010; Kleinfeld et al, 2011; Se-
ung, 2011; Denk et al, 2012; Reid, 2012; Helmstaedter et al,
2013). This data is currently not expected to include infor-
mation on the detailed physiological properties of all the
neurons in the connectome. Even so, already, there have
been two pioneering studies (Briggman et al, 2011; Bock
et al, 2011) that fruitfully use electron-microscopy recon-
structions in conjunction with two-photon calcium imaging
on the same tissue. In (Briggman et al, 2011), the authors
used this approach to rule out certain models of direction
selectivity in the retina. The other study (Bock et al, 2011)
examined the orientation-selectivity circuitry in the cortex
and found that inhibitory interneurons received convergent
anatomical input from nearby excitatory neurons that had a
broad range of preferred orientations. Recent work (Take-
mura et al, 2013) has also used connectomic reconstruc-
tions of the motion detection circuit in the fruit fly visual
system, in order to identify cellular targets for future func-
tional investigations; this is towards the goal of a compre-
hensive mechanistic understanding of this circuit. While this
broad approach of combining functional imaging with struc-
tural reconstructions creates new opportunities to unravel
structure-function relationships (Seung, 2011), to fruitfully
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use functional imaging seems to require that (a) we have
an a priori credible hypothesis about at least one high-level
computation that the neural circuit in question is perform-
ing and (b) we have a way of experimentally eliciting per-
formance of the said computation, usually via an appropri-
ate stimulus. Unfortunately, neither of these conditions ap-
pear to be satisfied for a majority of neuronal circuits in the
brain, especially as one moves away from the sensory/motor
periphery. Suppose, in addition to its wiring diagram, we
knew the detailed physiological response properties of all
the neurons in such a neural circuit to the extent that we
could predict circuit behavior (via simulations, for exam-
ple). This might provide a way forward towards advancing
hypotheses about what high-level computation(s) the circuit
is actually involved in. Regrettably, ascertaining the detailed
physiological response properties of all the neurons in such
a network appears to be out of reach of current experimental
technology. The prospects of obtaining the wiring diagram,
however, seem to hold more promise. The question therefore
becomes: (1) What can we learn from the wiring diagram
alone, even when the specific high-level function of the neu-
ral circuit may be unknown? (2) Are there fundamental lim-
its to what can be learned from the wiring diagram alone, in
the absence of more detailed physiological information?

To investigate these questions, we have studied a net-
work model equipped with neurons that obey a deterministic
spiking neuron model. We ask what computations networks
of specific architecturescannot perform, no matter what re-
sponse properties each of their neurons may have. The im-
plication, then, is that, owing to its structure, the network is
unable to effect the computation in question. That is, con-
nectomic constraints forbid the network from performing
the said computation. In addition, to rule out the possibil-
ity that this computation is so “hard” that no network (of
any architecture) can accomplish it, we stipulate the need
to demonstrate that there exists a network (of a different ar-
chitecture) comprising simple neurons that can indeed ef-
fect this computation. The goal of this paper is to establish
results of this form for various network architectures, af-
ter setting up a mathematical framework within which these
questions can be precisely posed. As a first simplifying step,
in this paper, we limit our study to feedforward networks
of neurons. Having started with this goal, however, we also
find that with the small number of basic properties assumed
for our model neurons, there are fundamental limits to the
computational constraints imposed by network structure, in
certain cases. In particular, we prove that, constrained only
by the properties in the current neuron model, every feedfor-
ward network, of arbitrary size and depth, has an equivalent
feedforward network of depth equal to two that effectsex-
actly the same computation. The implication of this result
is that we need more elaborate information about the prop-

erties of the neurons before connectomic constraints on the
computational ability of such networks can be discerned.

Before we can examine these questions, we are con-
fronted with the problem of having to define what computa-
tion exactly means, in this context. Physically, neurons and
their networks are simply devices that receive spike-trains
as input, and in turn generate spike-trains as output. It is
this translation from spike-trains to spike-trains that charac-
terizes information processing and indeed even cognition in
the brain. It is tempting to view a feedforward network as a
transformation, which is to say a function, that associates a
unique output spike train with each combination of afferent
input spike trains, since such networks do not have recurrent
loops. This is the intuition we will seek to make precise.

Since the functional role of single neurons and small
networks in the brain is not yet well understood, we do
not make assumptions about particular high-level tasks that
the network is trying to perform; we are just interested
in physical spike-train to spike-train transformations. Like-
wise, since the kinds of neural code employed are un-
clear, we make no overarching assumptions about the neu-
ral code either. We study precise spike times since there is
widespread evidence (Strehler and Lestienne, 1986; Rieke
et al, 1997, & references therein) that precise spike times
play a role in information processing in the brain, in many
cases. Indeed, Spike-Timing Dependent Plasticity, a class
of Hebbian learning rules that are sensitive to the relative
timing of pre and postsynaptic spikes have been discovered
(Markram et al, 1997; Bi and Poo, 1998) that support the
role of precise spike-timing in computation in the brain.
Studying spike times also subsumes cases where spiking
rate may be the relevant parameter and therefore there is no
loss of generality in making this assumption.

2 Notation and Preliminaries

In this section, we define the mathematical formalism used
to describe spike-trains and frequently-used operations on
them that, for instance, shift and segment them. The reader
may skim these on the first reading and revisit them if a spe-
cific technical point needs clarification later on.

An action potential or spike is a stereotypical event
characterized by the time instant at which it is initiated in
the neuron, which is referred to as itsspike time. Spike
times are represented relative to the present by real num-
bers, with positive values denoting past spike times and
negative values denoting future spike times. Aspike-train
x = 〈x1, x2, . . . , xk, . . .〉 is a strictly increasing sequence
of spike times, with every pair of spike times being at least
α apart, whereα > 0 is the absolute refractory period1 and

1 We assume a single fixed absolute refractory period for all neu-
rons, for convenience, although our results would be no different if
different neurons had different absolute refractory periods.
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xi is the spike time of spikei. An empty spike-train, de-
noted byφ, is one which has no spikes. Atime-bounded
spike-train (with bound (a, b)) is one where all spike times
lie in the bounded interval(a, b), for somea, b ∈ R. We use
S to denote the set of all spike trains and̄S(a,b) to denote
the set of all time-bounded spike-trains with bound(a, b). A
spike-train is said to have agap in the interval(c, d), if it has
no spikes in that time interval. Furthermore, this gap is said
to be oflength d− c.

We use the termspike-train ensemble to denote a col-
lection of spike-trains. Thus, formally, aspike-train ensem-
ble χ = 〈x1, . . . ,xm〉 is a tuple of spike-trains. Theorder
of a spike-train ensemble is the number of spike-trains in
it. For example,χ = 〈x1, . . . ,xm〉 is a spike-train ensem-
ble of orderm. A time-bounded spike-train ensemble (with
bound (a, b)) is one in which each of its spike-trains is time-
bounded (withbound (a, b)). A spike-train ensembleχ is
said have agap in the interval(c, d), if each of its spike
trains has a gap in the interval(c, d).

Next, we define some operators to time-shift, segment
and assemble/disassemble spike-trains from spike-train en-
sembles. Letx = 〈x1, x2, . . . , xk, . . .〉 be a spike-train
and χ = 〈x1, . . . ,xm〉 be a spike-train ensemble. The
time-shift operator for spike-trains is used to time-shift all
the spikes in a spike-train. Thus,σt(x) = 〈x1 − t, x2 −
t, . . . , xk − t, . . .〉. The time-shift operator for spike-train
ensembles is defined asσt(χ) = 〈σt(x1), . . . , σt(xm)〉.
The truncation operator for spike-trains is used to “cut
out” specific segments of a spike-train. It is defined as fol-
lows:Ξ[a,b](x) is the time-bounded spike-train with bound
[a, b] that is identical tox in the interval[a, b]. Ξ(a,b)(x),
Ξ(a,b](x) andΞ[a,b)(x) are defined likewise. In the same
vein,Ξ[a,∞)(x) is the spike-train that is identical tox in the
interval [a,∞) and has no spikes in the interval(−∞, a).
Similarly, Ξ(−∞,b](x) is the spike-train that is identical
to x in the interval(−∞, b] and has no spikes in the in-
terval (b,∞). Ξ(a,∞)(x) andΞ(−∞,b)(x) are also defined
similarly. The truncation operator for spike-train ensem-
bles is defined asΞ[a,b](χ) = 〈Ξ[a,b](x1), . . . , Ξ[a,b](xm)〉.
Ξ(a,b)(χ), Ξ(a,b](χ), Ξ[a,b)(χ), Ξ[a,∞)(χ), Ξ(−∞,b](χ),
Ξ(a,∞)(χ) andΞ(−∞,b)(χ) are defined likewise. Further-
more,Ξt(·) is shorthand forΞ[t,t](·). Theprojection oper-
ator for spike-train ensembles is used to “pull-out” a spe-
cific spike-train from a spike-train ensemble. It is defined
asΠi(χ) = xi, where1 ≤ i ≤ m. Let y1,y2, . . . ,yn

be spike-trains. Thejoin operator for spike-trains is used to
“bundle-up” a set of spike-trains to obtain a spike-train en-

semble. It is defined asy1 ⊔ y2 ⊔ . . . ⊔ yn =
n⊔

i=1

yi =

〈y1,y2, . . . ,yn〉.

3 The Neuron Model

The present work treats the setting in which we know the
wiring diagram of a network, but lack detailed information
on the response properties of its neurons. We then wish to
show computations that the network cannot accomplish,no
matter what response properties its neurons may have. The
modeling question we must first address, therefore, is what
kind of neuron model we ought to use in such a context.

While we lack detailed information on each of the neu-
rons in the network, it is reasonable to assume that all the
neurons in the network satisfy a small number of elemen-
tary properties. For example, spiking neurons are generally
known to have an absolute refractory period and most of
them settle to a resting membrane potential upon receiving
no input for sufficiently long, where this resting membrane
potential is smaller than the threshold required to elicit a
spike. We wish to have a model that is contingent on a small
number of such basic properties, but whose responses are
unconstrained otherwise, in order to allow for a large class
of possible responses.

Mathematically, we formulate the neuron as an abstract
mathematical object that satisfies a small number of axioms,
which correspond to such elementary properties.

Another way to think about the model is as one that
brings “under its umbrella” several other neuron models.
These are models that satisfy the properties that our model
is contingent on. In Online Resource A, we demonstrate, for
instance, that neuron models such as the Leaky Integrate-
and-Fire Model and the Spike Response Model SRM0 sat-
isfy these properties up to arbitrary accuracy. Our model can
thus be seen as a generalization2 of these neuron models,
specifically one that allows for a much wider class of re-
sponses.

There are also other strong reasons for employing this
type of model. Crucially, it allows the possibility of incre-
mentally adding more properties to the neuron model, and
studying how that further constrains the computational prop-
erties of the network. This would model the scenario where
we have more detailed knowledge about individual neuron
properties, which might well turn out to be the case with
the connectome projects. While technical hurdles presently
lie in the way of inferring, for example, distributions of ion-
channels and neurotransmitter receptors in each neuron us-
ing electron microscopy(Denk et al, 2012), it is conceivable
that future advances make this possible, giving us a better
sense of the physiological properties of all the individual
neurons in the connectome; other future technological ad-

2 Models such as the Leaky Integrate-and-Fire (LIF) and Spike Re-
sponse Model (SRM), in addition to the constraints in our model have
their membrane potential functionP (·) specified outright. In case of
the LIF model, this is specified via a differential equation andin the
case of SRM, the specific functional form is written down explicitly.
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vances may also help in this direction. Furthermore, the need
for adding more properties to the model and studying the
consequences will become especially apparent towards the
end of this paper, when we show limits to the constraints im-
posed by the present set of properties assumed in the model.

3.1 Properties

We start off by informally describing the properties that our
model is contingent on. Notable cases where the properties
do not hold are also pointed out. This is followed by a formal
mathematical definition of the model. The approach taken
here in defining the model is along the lines of the one in
(Banerjee, 2001).

The following are our assumptions:

1. We assume that the neuron is a device that receives in-
put from other neurons exclusively by spikes which are
received via chemical synapses.3

2. The neuron is a finite-precision device with fading mem-
ory. Hence, the underlying potential function can be de-
termined4 from a bounded past. That is, we assume that,
for each neuron, there exist positive real numbersΥ and
ρ, so that the current membrane potential of the neu-
ron can be determined as a function of the input spikes
received in the pastΥ milliseconds and the spikes pro-
duced by the neuron in the pastρ milliseconds. The pa-
rameterΥ would correspond to the timescale at which
the neuron integrates inputs received from other neurons
andρ corresponds to the notion ofrelative refractory pe-
riod.

3. Specifically, we assume that the membrane potential
of the neuron can be written down as a real-valued,
everywhere-bounded function of the formP (χ;x0),
where x0 is a time-bounded spike-train, with bound
(0, ρ) andχ = 〈x1, . . . ,xm〉 is a time-bounded spike-
train ensemble with bound(0, Υ ). Informally, xi, for
1 ≤ i ≤ m, is the sequence of spikes afferent in synapse
i in the pastΥ milliseconds andx0 is the sequence of
spikes efferent from the current neuron in the pastρ

milliseconds. The functionP (·) characterizes the en-
tire spatiotemporal response of the neuron to spikes in-
cluding synaptic strengths, their location on dendrites,
and their modulation of each other’s effects at the soma,
spike-propagation delays, and the postspike hyperpolar-
ization.

4. Without loss of generality, we assume the resting mem-
brane potential to be0.

3 In this work, we do not treat electrical synapses or ephaptic inter-
actions (Shepherd, 2004).

4 We do not treat stochastic variability in the responses of neurons
or neuromodulation in this paper.

5. Let τ > 0 be the threshold that the membrane poten-
tial must reach in order to elicit a spike. Observe that
the model allows for variable5 thresholds, as long as the
threshold itself is a function of spikes afferent in the past
Υ milliseconds and spikes efferent from the present neu-
ron in the pastρ milliseconds. Furthermore, when a new
output spike is produced, in the model, the membrane
potential immediately goes below threshold. That is, the
membrane potential function in the model takes values
that are at most that of the threshold. This simplifies our
condition for an output spike to be that theP (·) merely
hits threshold, without having to check if it hits it from
below, since it cannot hit it from above. Again, this is
done without loss of generality. Additionally, letλ be a
negative real number that represents a lower-bound on
the values that the membrane potential can take.

6. Output spikes in the recent past tend to have an in-
hibitory effect, in the following sense6:
P (χ;x0) ≤ P (χ;φ), for all “legal” χ andx0.
Thus, our model allows for a wide variety of AHPs.
Indeed, the only constraint on AHPs is the one given
above. That is, suppose, in the first case that at a cer-
tain point in time the neuron received spikes in the past
Υ seconds present inχ as input and did not output any
spikes in the pastρmilliseconds. In the second case, sup-
pose that at a certain point in time the neuron again re-
ceived spikes in the pastΥ seconds present inχ as input
but output some spikes in the pastρ milliseconds. The
condition states that the membrane potential in the sec-
ond case must be at most that of the value in the first
case. Thus, our results will be true for any neuron model
that has an AHP that obeys this condition.

7. Owing to the absolute refractory periodα > 0, no two
input or output spikes can occur closer thanα. That is,
supposex0 = 〈x1

0, x
2
0, . . . , x

k
0〉, wherex1

0 < α. Then
P (χ;x0) < τ , for all “legal” χ.

8. Finally, on receiving no input spikes in the pastΥ

milliseconds and no output spikes in the pastρ millisec-
onds, the neuron settles to its resting potential. That is,
P (〈φ,φ, . . . ,φ〉;φ) = 0.

A feedforward network of neurons, is a Directed Acyclic
Graph where each vertex corresponds to an instantiation
of the neuron model, with the exception of some vertices,
designated as input vertices (which are placeholders for

5 In many biological neurons, the membrane potential that the soma
(or axon initial segment) must reach, in order to elicit a spike is not
fixed at all times and is, for example, a function of the inactivation lev-
els of the voltage-gated Sodium channels. Our model can accomodate
this phenomenon, to the extent that this threshold itself is a function of
spikes afferent in the pastΥ milliseconds and spikes efferent from the
present neuron in the pastρ milliseconds.

6 This is violated, notably, in neurons that have a post-inhibitory
rebound.



Connectomic Constraints on Computation in Feedforward Networks of Spiking Neurons 5

input spike-trains); one neuron is designated the output
neuron. Theorder of a feedforward network is equal to the
number of its input vertices. Thedepth of a feedforward
network is the length of the longest path from an input
vertex to the output vertex.

Next, we formalize the above notions into a rigorous defini-
tion of a neuron as an abstract mathematical object.

Definition 1 (Neuron). A neuron N is a 7-tuple
〈α, Υ, ρ, τ, λ,m, P : S̄m

(0,Υ ) × S̄(0,ρ) → [λ, τ ]〉, where
α, Υ, ρ, τ ∈ R

+ with ρ ≥ α, λ ∈ R
− andm ∈ Z

+. Fur-
thermore,

1. If x0 = 〈x1
0, x

2
0, . . . , x

k
0〉 with x1

0 < α, thenP (χ;x0) <
τ , for all χ ∈ S̄m

(0,Υ ) and for allx0 ∈ S̄(0,ρ).

2. P (χ;x0) ≤ P (χ;φ), for all χ ∈ S̄m
(0,Υ ) and for allx0 ∈

S̄(0,ρ).
3. P (〈φ,φ, . . . ,φ〉;φ) = 0.

A neuron is said togenerate a spike wheneverP (·) = τ .

4 Feedforward Networks as Input-to-Output
transformations

As discussed earlier, it is intuitively appealing to view feed-
forward networks of neurons as transformations that map
input spike-trains to output spike-trains. In this section, we
seek to make this notion precise by clarifying in what sense,
if at all, these networks constitute the said transformations.
It will turn out that even single neurons cannot correctly
be viewed as such transformations, in general. In the next
section, however, we show that under biologically-relevant
spiking regimes, we can salvage this view of feedforward
networks as spike-train to spike-train transformations.

Let us first consider the simplest type of feedforward
network, namely a single neuron. Observe that our abstract
neuron model does not explicitly prescribe an output spike-
train for a given input spike-train ensemble. That is, recall
from the previous section, that the membrane potential of
the neuron depends not only on the input spikes received in
the pastΥ milliseconds, it also depends on the output spikes
produced by it in the pastρ milliseconds. Therefore, knowl-
edge of just input spike times in the pastΥ milliseconds
does not uniquely determine the current membrane poten-
tial (and therefore the output spike-train produced from it).
It might be tempting to then somehow use the fact that past
output spikes are themselves a function of input and out-
put received in the more distant past, and attempt to make
the current membrane potential a function of a bounded al-
beit larger “window” of past input spikes alone. The simple
counterexample described in Figure 1 shows that this does
not work. In particular, if we attempt to characterize the cur-
rent membrane potential of the neuron as a function of past

t = 0t = t′

spike is absent

Membrane potential

spike is absent
when the 1st input

Membrane potential
with AHP
effects

Membrane potential
after ignoring

AHP effects

Input spike train

Output spike train

Output spike train
when the 1st input

2ρ − δ

τ

τ

τ

1st input spike

PAST ρ − δ/2

Fig. 1 This counterexample describes a single neuron which has just
one afferent synapse. Until timet′ in the past, it received no input
spikes. After this time, its input consisted of spikes that arrivedevery
ρ− δ/2 milliseconds, where0 < δ ≤ 2(ρ−α). An input spike alone
(if there were no output spikes in the pastρ milliseconds) causes this
neuron to produce an output spike. However, in addition, if there were
an output spike within the pastρ milliseconds, the afterhyperpolariza-
tion (AHP) due to that spike is sufficient to bring the potentialbelow
threshold, so that the neuron does not spike currently. We therefore ob-
serve that if the first spike of the input spike-train is absent, then the
output spike-train changes drastically. Note that this change occurs no
matter how often the shaded segment in the middle is replicated, i.e.
it does not depend on how long ago the first spike occurred. Thus, the
counterexample demonstrates that the membrane potential at any point
in time may depend on the position of an input spike that occurred
arbitrarily long time ago. Note that the input or the output pattern be-
ing periodic and the two output patterns being phase-shifted is not a
necessary ingredient of the counterexample; i.e. it is straightforward
to construct a (more complicated) counterexample that exhibitsthis
same phenomenon where neither the input spike-train nor the output
spike-train are periodic and where the two output spike patterns are not
phase-shifted versions of each other.

input spikes alone, the current membrane potential may de-
pend on the position of an input spike that has occurred arbi-
trarily long time ago in the past. To sum up, this counterex-
ample proves that, without further restrictions, even a sin-
gle neuron cannot be correctly viewed as a bounded-length
spike-train to spike-train transformation.

This pessimistic prognosis notwithstanding, it may seem
that if we knew the infinite history of input spikes received
by the neuron, we should be able to uniquely determine
its current membrane potential. Unfortunately, the situation
turns out to be even more dire – this turns out not to be
the case. Before we demonstrate this, we must return to the
issue of what it means for a neuron toproduce an output
spike-train when it receives a certain spike-train ensemble
as input. That is, suppose the reader had an instantiation of
our neuron model, which in this case would mean the val-
ues ofΥ , ρ andτ and the membrane potential functionP (·).
Further, suppose the reader were given an input spike-train
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2ρ − δ

2ρ − δ

PAST

consistent

consistent

Input

First

output

Second

output

τ

τ

ρ − δ/2

Fig. 2 The counterexample here is very similar to the one in Figure 1,
except that, instead of there being no input spikes beforet′, we have
an unbounded input spike-train ensemble, with the same periodic input
spikes occurring since the infinite past. The neuron here has theexact
same response properties as the one in Figure 1. Observe that both
output spike-trains are consistent with this input, for eacht ∈ R. The
corresponding membrane potential traces appear below each consistent
output spike train.

ensembleχ and told that the neuron “produced” the output
spike-trainx0 when driven byχ. Then, all that the reader
can do to verify this claim is to check if the given output
spike-train isconsistent with the input spike-train ensem-
ble for the given neuron in the following sense. We would
go to each point in time where the neuron spiked and plug
into P (·) the input spikes in the pastΥ milliseconds from
χ, and output spikes from the pastρ milliseconds fromx0

and check if the value ofP (·) equals the thresholdτ . Like-
wise, for the time points where the output spike-train does
not have a spike, we need to check that this value is less
than the threshold. If the answers are in the affirmative for
all time-points we can say that the given output spike-train
is consistent with the given input spike-train ensemble with
respect to the neuron in question. However, this still allows
the possibility of more than one consistent output spike-train
to exist for a given input spike-train ensemble, with respect
to a given neuron. Indeed, we will demonstrate that this pos-
sibility can occur and therefore given the infinite history of
input spikes received by the neuron, we cannot uniquely de-
termine the output spike train produced. Before getting into
the counterexample, for completeness, let us formally define
this notion ofconsistency. Recall that〈t〉 denotes a spike-
train with a single spike at time instantt.

Definition 2. An output spike-trainx0 is said to beconsis-
tent with an input spike-train ensembleχ, with respect to a
neuronN〈α, Υ, ρ, τ, λ,m, P : S̄m

(0,Υ ) × S̄(0,ρ) → [λ, τ ]〉,

if χ ∈ Sm and the following holds. For everyt ∈ R,
Ξtx0 = 〈t〉 if and only if
P (Ξ(0,Υ )(σt(χ)), Ξ(0,ρ)(σt(x0)) = τ .

The question, therefore, is the following. For every (un-
bounded) input spike-train ensembleχ, does there exist ex-
actly one (unbounded) output spike trainx0, so thatx0 is
consistent withχ with respect to a given neuronN? As al-
luded to, the answer turns out to be in the negative. The
counterexample in Figure 2 describes a neuron and an in-
finitely7 long input spike-train, which has two consistent
output spike-trains.

The underlying difficulty in defining even single neurons
as spike-train to spike-train transformations, with both view-
points discussed above, is persistent dependence, in general,
of current membrane potential on “initial state”. The way
to circumvent this difficulty would be to impose additional
restrictions which render such counterexamples untenable.
For example, there is the possibility of considering just a
subset of input/output spike-trains, which have the property
of the current membrane potential being independent of the
input spikes beyond a certain time in the past. Such a sub-
set would certainly exclude the examples discussed in this
section. This would correspond to restricting our theory toa
certain kind of spiking regime.

In the next section, we come up with a condition that, in
effect, restricts spike-trains to biologically-relevantspiking
regimes and prove that this implies independence as alluded
to above. Roughly speaking, the condition is that if a neu-
ron has had a recent gap in its output spike-train equal to
at leasttwice its relative refractory period, then its current
membrane potential is independent of the input beyond the
relatively recent past. We show that this leads to the notion
of feedforward networks as spike-train to spike-train trans-
formations to be well-defined.

5 The Gap Lemma and Criteria

In this section, we devise a biologically well-motivated con-
dition that guarantees independence of current membrane
potential from input spikes beyond the recent past. This con-
dition is used in constructing a criterion for single neurons
which when satisfied, guarantees a unique consistent out-
put spike-train and leads to the view of a neuron as a trans-
formation that maps bounded-length input spike-trains to
bounded-length output spike-trains. After this, similar cri-
teria are defined for feedforward networks, in general.

For a neuron, the way input spikes that happened suf-
ficiently earlier affect current membrane potential is via a
causal sequence of output spikes, causal in the sense that

7 The interested reader is referred to Online Resource B for a dis-
cussion on the issue of infinitely-long input spike-trains in thiscontext.
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Fig. 3 This figure illustrates the idea behind the Gap Lemma. Suppose
there exists a neuron, withΥ and ρ being the lengths of input and
output windows respectively, that “effects” the transformation shown
above. Let(t′ − t) ≥ Υ . Suppose, the spikes in the shaded region,
which is an interval of lengthρ occurred at the exact same position, for
all input spike-train ensembles that are identical in the range[t, t′], but
have spikes occurring at arbitrary positions older than time instantt′.
Then, the membrane potential of that neuron att is identical in all those
cases. This implies that the spikes in the shaded region are a function
of exactly the input spikes in the interval[t, t′]; in particular, they are
independent of input spikes occurring beforet′.

each output spike in the sequence had an effect on the mem-
brane potential while the subsequent one in the sequence
was being produced and the input spike in question had an
effect on the membrane potential, when the oldest output
spike in the same sequence was produced. As a result, when
an input spike is moved, this effect could propagate across
time and cause the output spike train to change drastically.
The condition in the Gap Lemma, in effect, seeks to break
the causality in this causal chain.

Figure 3 elaborates the main idea behind the condi-
tion. Suppose there exists a neuron, withΥ andρ being the
lengths of input and output windows respectively, that “ef-
fects” the transformation shown in Figure 3. In a nutshell,
if there was a guarantee that spike positions in an interval
of lengthρ in the output spike train would remain invariant
to changes in the past input spike-train ensemble, then this
would break the aforementioned causal chain.

The question, of course, is what condition might guar-
antee such a situation. It turns out that a gap of length2ρ

in the output spike-train suffices, as the next lemma shows.
That is, if the neuron effects a transformation with a2ρ gap,
say ending att, present in the output, then fort′ beingΥ +ρ

milliseconds beforet, such that no matter how input spikes
older thant′ are changed, the latter half of the2ρ gap is guar-
anteed to have no spikes in each case. Therefore, membrane
potential starting att, is the same in all such cases.2ρ also
turns out to be the smallest gap length for which this works.
Figure 4 offers some brief intuition on why a gap of length
2ρ suffices to guarantee independence. The technical details
are in the following lemma. A formal proof is available in
Online Resource B.

χ∗

Υ

t
ρ ρ

t + ρt + 2ρt + ρ + Υ

~x0

χ

Υ

t
ρ ρ

t + ρt + 2ρt + ρ + Υ

~x∗
0

INPUT

OUTPUT

OUTPUT

INPUT

PAST

Fig. 4 This figure helps visualize the intuition behind why a gap of
length2ρ suffices to guarantee independence in the Gap Lemma. Sup-
pose a neuron on receiving an input spike-train ensembleχ∗ “pro-
duces”8an output spike-trainx∗

0 . Further, suppose,x∗
0 has a gap of

length2ρ ending at time instantt. Now letχ be some input spike-train
ensemble, which is identical toχ∗ in an interval of lengthΥ+ρ ending
att. Letx0 be the output spike-train ”produced” byχ. Then, the condi-
tion guarantees thatx0 has a gap of lengthρ immediately precedingt.
Here is why. When the neuron is being driven byχ∗, clearly, the mem-
brane potential is below threshold at each time instantρ milliseconds
beforet. At each such time instant, the neuron has no past output spikes
ρ milliseconds previously. Now, when the neuron is being driven by χ
instead, there is no guarantee that the earlier half of the2ρ gap is pre-
served . Thus, at each time instantρ milliseconds beforet, the neuron
“sees” the same input spike-train ensembleΥ milliseconds previously
as withχ∗, but possibly some past output spikesρ milliseconds pre-
viously. Therefore, it’s membrane potential at each such time instant
may be less than or equal to the corresponding value while the neuron
was being driven byχ∗, since, intuitively, the presence of recent effer-
ent spikes could serve to afterhyperpolarize the membrane potential9.
Thus, since the membrane potential was already below threshold inthis
time interval while the neuron was being driven byχ∗, it is below the
threshold, while the neuron is being driven byχ as well.

Lemma 1 (Gap Lemma). Consider a neuron
N〈α, Υ, ρ, τ, λ,m, P : S̄m

(0,Υ ) × S̄(0,ρ) → [λ, τ ]〉, a
spike-train ensemble χ∗ of order m and a spike-train x0

∗

which has a gap in the interval (t, t + 2ρ), so that x0
∗ is

consistent with χ∗, with respect to N. Let χ be an arbitrary
spike-train ensemble that is identical to χ∗ in the interval
(t, t+ Υ + ρ).

Then, every output spike-train consistent with χ, with re-
spect to N, has a gap in the interval (t, t+ ρ). Furthermore,
2ρ is the smallest gap length in x∗

0, for which this is true.

8 For the sake of simplicity of exposition, assume there is exactly
one consistent output spike-train. This is not a requirement as will be-
come clear in the lemma.

9 Formally, this follows from Axiom 2 in the definition of our ab-
stract neuron.
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The Gap Lemma has some ready implications as stated
in the corollary below. A proof is available in Online Re-
source B.

Corollary 1. Consider a neuron N〈α, Υ, ρ, τ, λ,m, P :
S̄m
(0,Υ ) × S̄(0,ρ) → [λ, τ ]〉, a spike-train ensemble χ∗ of or-

der m and a spike-train x0
∗ which has a gap in the interval

(t, t + 2ρ) so that x0
∗ is consistent with χ∗, with respect to

N. Then

1. Every x0 consistent with χ∗, with respect to N, has a gap
in the interval (t, t+ ρ).

2. Every x0 consistent with χ∗, with respect to N, is identi-
cal to x0

∗ in the interval (−∞, t+ρ), i.e. into the future
after time instant t+ ρ.

3. For every t′ more recent than (t + ρ), the membrane
potential at t′, is a function of spikes in Ξ(t′,t+Υ+ρ)(χ

∗).

The upshot of the Gap Lemma and its corollary is that
whenever a neuron goes through a period of time equal to
twice its relative refractory period where it has produced
no output spikes it undergoes a “reset” in the sense that its
membrane potential from then on becomes independent of
input spikes that are older thanΥ + ρ milliseconds before
the end of the gap.

Large gaps in the output spike-trains of neurons seem
to be extensively prevalent in the human brain. In parts of
the brain where the neurons spike persistently, such as in
the frontal cortex, the spike rate is very low (0.1Hz-10Hz)
(Shepherd, 2004). In contrast, the typical spike rate of reti-
nal ganglion cells can be very high but the activity is gener-
ally interspersed with large gaps during which no spikes are
emitted (Nirenberg et al, 2001).

These observations motivate our definition of a criterion
for input spike-train ensembles afferent on single neurons.
The criterion stipulates that there be intermittent gaps of
length at least twice the relative refractory period in an out-
put spike-train consistent with the input spike-train ensem-
ble, with respect to the neuron in question. As we elaborate
in a moment, the definition is set up so that for an input
spike-train ensembleχ that satisfies aT -Gap criterion for
a neuron, the membrane potential at any point in time is
dependent on at mostT milliseconds of input spikes inχ
before it.

Definition 3 (Gap Criterion for a single neuron). For T ∈
R

+, a spike-train ensembleχ is said to satisfy aT -Gap
Criterion10 for a neuronN〈α, Υ, ρ, τ, λ,m, P : S̄m

(0,Υ ) ×

S̄(0,ρ) → [λ, τ ]〉 if the following is true: There exists a spike-
trainx0 with at least one gap of length2ρ in every interval
of time of lengthT − Υ + 2ρ, so thatx0 is consistent with
χ with respect toN.

10 Note that for sufficiently small values ofT (in relation toΥ and
ρ), noχ may satisfy aT -Gap Criterion. This is deliberate formulation
that will minimize notational clutter in forthcoming definitions.

t′

INPUT

OUTPUT

PAST

2ρ T − Υ − 2ρ

T − Υ + 2ρ

T

Υ

2ρ

Fig. 5 Illustration demonstrating that for an input spike-train ensemble
χ that satisfies aT -Gap criterion, the membrane potential at any point
in time is dependent on at mostT milliseconds of input spikes inχ
before it. Owing to theT -Gap criterion the distance between the end
and start of any two consecutive gaps of length2ρ on the output spike-
train is at mostT − Υ − 2ρ. Upto the earlier half of a2ρ gap (whose
latest point is denoted byt′) is dependent on input corresponding to the
previous2ρ gap. It follows that the membrane potential att′ depends
only on input spikes in the interval of lengthT before it, as depicted,
owing to the Gap Lemma.

Such input spike-train ensembles also have exactly one
consistent output spike-train. The interested reader is di-
rected to Proposition 1 in Online Resource B for a formal
statement and proof of this fact.

For an input spike-train ensembleχ that satisfies aT -
Gap criterion for a neuron, the membrane potential at any
point in time is dependent on at mostT milliseconds of input
spikes inχ before it, as discussed in Figure 5.

With inputs that satisfy theT -Gap Criterion, here is what
we need to do to physically determine the current membrane
potential, even if the neuron has been receiving input since
the infinite past: Start off the neuron from an arbitrary state,
and drive it with input that the neuron received in the past
T milliseconds. The Gap Lemma guarantees that the mem-
brane potential we see now will be identical to the actual
membrane potential, since the membrane potential is guar-
anteed to have undergone a “reset” in the ensuing time.

The Gap Criterion we have defined for single neurons
can be naturally extended to the case of feedforward net-
works. The criterion is simply that the input spike-train en-
semble to the network is such that every neuron’s input
obeys a scaled Gap criterion for single neurons. Figure 6
explains the idea. Formally, the definition proceeds induc-
tively, starting with neurons of depth 1.

Definition 4 (Gap Criterion for a feedforward network). An
input spike-train ensembleχ is said to satisfy aT -Gap Crite-
rion for a feedforward network if each neuron in the network
satisfies a(T

d
)-Gap Criterion, when the network is driven by

χ, whered is the depth of the acyclic network.

As with the criterion for the single neuron, the mem-
brane potential of the output neuron at any point is depen-
dent on at mostT milliseconds of past input, if the input
spike-train ensemble to the feedforward network satisfies
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Fig. 6 Schematic diagram illustrating how the Gap criterion works for
the simple two-neuron network on the left. The membrane potential of
the output neuron att depends on input received from the “intermedi-
ate” neuron, as depicted in the darkly-shaded region, owing to the Gap
Lemma. The output of the intermediate neuron in the darkly-shaded re-
gion, in turn, depends on input it received in the lightly-shaded region.
Thus, transitively, membrane potential of the output neuron att is de-
pendent at most on input received by the network in the lightly-shaded
region.

a T -Gap criterion. Additionally, the output spike-train is
unique. Lemma 2 and its proof in Online Resource B make
precise these facts.

We thus find ourselves at a juncture where questions we
initially sought to ask can be posed in a self-consistent man-
ner. So, looking back at the big picture, we had initially
wished to view feedforward networks as transformations
that mapped bounded-length input spike-trains to bounded-
length output spike trains. However, we found that this no-
tion was not always well-defined. We then showed that if we
restrict the set of input spike-trains so they satisfied certain
criteria, one can correctly speak of output spike-trains that
such inputs are mapped to, by the feedforward network in
question. We also argued that this restricted set of spike-
trains encompasses biologically-relevant spiking regimes.
Thus, feedforward networks can be seen as transformations
that map this restricted set of input spike-trains to output
spike-trains. Indeed, this will be the sense in which feed-
forward networks are treated as transformations. Next, we
formalize these observations and define some notation.

Notation. Given a feedforward networkN , let GT
N be

the set of all input spike-train ensembles that satisfy aT -
Gap Criterion forN . Let GN =

⋃
T∈R+ GT

N . Therefore,
every feedforward networkN induces a transformation
TN : GN → S that maps each spike-train ensemble inGN

to a unique output spike train in the set of spike-trainsS.
SupposeG′ ⊆ GN . Then, letTN |G′ : G′ → S be the map
defined asTN |G′(χ) = TN (χ), for all χ ∈ G′.

The Gap Criteria are very general and biologically well-
motivated. However, given a neuron or a feedforward net-
work, there does not appear to be an easy way to character-
ize all the input spike-train ensembles that satisfy a certain
Gap Criterion for it. That is, for a given neuron, whether
an input spike-train ensemble satisfies a Gap Criterion for it
seems to depend intimately on the exact form of its mem-

brane potential function. As a result, a spike-train ensem-
ble that satisfies a Gap criterion for one neuron may not
satisfy any Gap Criterion for another neuron. For a feed-
forward network, the problem becomes even more difficult,
since intermediate neurons must satisfy Gap Criteria, and
also produce output spike-trains that satisfy Gap Criteriafor
neurons further downstream. Furthermore, in order to com-
pare transformations effected by two different networks, we
need to study inputs that satisfy some Gap criterion for both
of them, for otherwise, the notion of a transformation may
no longer hold. Now, we sought to ask what transformations
all feedforward networks with a certain architecture could
not do. For this, we need to characterize inputs that satisfya
Gap Criterion for all the networks involved, which seems to
be an even more intractable problem.

This brings up the question of the existence of another
criterion according to which the set of spike-train ensembles
is easier to characterize and iscommon across different net-
works. Next, we propose one such criterion and show that
it consists of spike-train ensembles which are a subset of
those induced by the Gap criteria for all feedforward net-
works. Loosely speaking, these are input spike-train ensem-
bles which, before a certain time instant in the past, have had
no spikes. The spike-train ensembles satisfying the said cri-
terion, which we call the Flush criterion, allow us to sidestep
the difficult issues just discussed. While this is a purely the-
oretical construct with no claim of biological relevance, in
Section 7, we prove that there is no loss by restricting our-
selves to the Flush criterion. That is, not only is a result
proved using the Flush criterion applicable with the Gap cri-
terion,every result true with the Gap criterion can be proved
by using the Flush criterion exclusively.

6 Flush Criterion

The idea of the Flush Criterion is to force the neuron to pro-
duce no output spikes for sufficiently long so as to guarantee
that a Gap criterion is being satisfied. This is done by hav-
ing a semi-infinitely long interval with no input spikes. This
“flushes” the neuron by bringing it to the resting potential
and keeps it there for a sufficiently long time, during which
it produces no output spikes. In a feedforward network, the
flush is propagated so that all neurons have had a sufficiently
long gap in their output spike-trains. Observe that the Flush
Criterion is not defined with reference to any feedforward
network and is just a property of the spike-train ensemble.
We make this notion precise below.

Definition 5 (Flush Criterion). A spike-train ensembleχ is
said to satisfy aT -Flush Criterion, if all its spikes lie in the
interval (0, T ), i.e. it has no spikes upto time instantT and
since time instant 0.
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It turns out that an input spike-train ensemble to a neuron
that satisfies a Flush criterion also satisfies a Gap criterion.
The technical details along with a proof are in Lemma 3 in
Online Resource B.

Likewise, an input spike-train ensemble to a feedforward
network satisfying a Flush criterion also satisfies a Gap cri-
terion for that network, as elaborated in Lemma 4 which is
available in Online Resource B with a proof.

The Flush criterion is a construct made for mathemat-
ical expedience and prima facie does not have any biolog-
ical relevance. It is a network-independent criterion which
enables us to circumvent difficulties that working with the
Gap criterion entailed. It will soon become clear why it is
a useful construction, when we show that it is equivalent to
the Gap criterion insofar as the questions we seek to ask are
concerned.

7 Transformational Complexity

Having laid the groundwork, in this section, we set up a defi-
nition that will allow us to ask if there exists a transformation
that no network of a certain architecture could effect that a
network of a different architecture could. It is convenientto
formulate the definition in the following terms. Given two
classes11 of networks with the second class encompassing
the first, we ask if there is a network in the second class
whose transformation cannot be performed by any network
in the first class. That is, does the second class possess a
larger repertoire of transformations than the first, givingit
more complex computational capabilities?

Definition 6 (Transformational Complexity). Let Σ1 and
Σ2 be two sets of feedforward networks, each network being
of orderm, with Σ1 ⊆ Σ2. DefineG12 =

⋂
N∈Σ2

GN . The
setΣ2 is said to bemore complex than Σ1, if there exists an
N ′ ∈ Σ2 such that for allN ∈ Σ1, TN ′ |G12

6= TN |G12
.

A couple of remarks about the definition above are in order.
Firstly,Σ1 being a proper subset ofΣ2, does not necessarily
imply that the that the set of transformations effected by net-
works inΣ1 is also a proper subset of those effected byΣ2.
In particular, it could be the case that the set of transforma-
tions effected byΣ1 is exactly the same as that effected by
Σ2, even thoughΣ1 is a proper subset ofΣ2. Indeed, this is
what is demonstrated by the result of Section 9, which shows
in the context of the present neuron model that even though
the set of depth-two feedforward networks is a strict subset
of the set of all feedforward networks, both these sets ef-
fect the same class of transformations, namely those that are
causal, time-invariant and resettable. Secondly, observethat
while comparing a set of networks, we restrict ourselves to

11 The classes of networks could correspond to ones that contain all
networks with specific network architectures, although for the purpose
of the definition, there is no reason to require this to be the case.

inputs for which all the networks satisfy a certain Gap Cri-
terion (though, not necessarily for the sameT ), so that the
notion of a transformation is well-defined on the input set,
for all networks under consideration. Note also thatG12 is
always a nonempty set, becauseG12 contains within it all
inputs satisfying the Flush criterion. Henceforth, for brevity,
any result that establishes a relationship of the form defined
above is called acomplexity result. Before we proceed, we
introduce some useful notation.

Notation. Let the set of spike-train ensembles of or-
derm that satisfy the T-Flush criterion beFT

m. Let Fm =⋃
T∈R+ FT

m. What we have established in the previous sec-
tion is thatFm ⊆ GN , for every feedforward networkN of
orderm.

Next, we show that if one class of networks is more com-
plex than another, then inputs that satisfy the Flush Crite-
rion are both necessary and sufficient to prove this. That is,
to prove this type of complexity result, one can work ex-
clusively with Flush inputs without losing any generality.
This is not obvious because Flush inputs form a subset of
the more biologically well-motivated Gap inputs. The next
lemma formalizes this equivalence. Note that the statement
of the lemma is substantially identical to that of Definition6,
except that the input spike-train ensembles in the lemma be-
low satisfy the Flush criterion, as opposed to the ones in
Definition 6 which satisfyG12, the set of input spike-train
ensembles that satisfy a Gap Criterion for all the networks
under consideration.

Lemma 5 (Equivalence of Flush and Gap Criteria with re-
spect to Transformational Complexity). Let Σ1 and Σ2 be
two sets of feedforward networks, each network being of or-
der m, with Σ1 ⊆ Σ2. Then, Σ2 is more complex than Σ1

if and only if ∃N ′ ∈ Σ2 such that ∀N ∈ Σ1, TN ′ |Fm
6=

TN |Fm
.

Proof sketch. A full proof is available in Online Resource
B; here we sketch the intuition behind the proof.

Showing that Flush inputs are sufficient is the easier half
of the proof. If a complexity result can be shown using Flush
inputs, it follows that it holds for Gap inputs as well, since
Fm ⊆ G12. To show that the existence of Flush inputs is
necessary, we assume a complexity result proved using Gap
inputs and construct Flush inputs such that the result can be
shown using those Flush inputs alone. Now supposeN ′ ∈
Σ2 be the network such that no network inΣ1 effects the
same transformation asN ′, when the domain is restricted to
the setG12. Now, consider arbitraryN ∈ Σ1. There must
exist aχ ∈ G12 such thatTN ′ |Fm

(χ) 6= TN |Fm
(χ). By

definition, thisχ satisfies aT1-Gap Criterion forN and a
T2-Gap Criterion forN ′. Let T = max(T1, T2). The claim
is that ifχ is cut up into “chunks” of length2T , where each
“chunk” satisfies a 2T-Flush criterion, thenN andN ′ will
map at least one of those chunks to different output spike
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(a) Example of a transformation that no feedforward network12can ef-
fect. The shaded region is replicated over, to obtain mappingsfor larger
and larger values ofT .
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(b) A transformation that no single neuron can effect, that a network
with two neurons can.

Fig. 7

trains, since the output in the latter half of the chunk is iden-
tical to that produced by the corresponding segment ofχ.
This process of “cutting up”, when “completed” for each
N ∈ Σ1 yields a subset of Flush inputs, using which the
complexity result can be established.

Assured by this theoretical guarantee that there is no loss
of generality by doing so, we will henceforth only work with
inputs satisfying the Flush Criterion, while faced with the
task of proving complexity results. This buys us a great deal
of mathematical expedience at no cost. From now on, unless
qualified otherwise, when we speak of atransformation, we
mean a map of the formT : Fm → S that maps the set of
Flush input spike-train ensembles to the set of output spike-
trains.

8 Complexity results

In this section, we establish some complexity results. First,
we show that there exist spike-train to spike-train transfor-
mations that no feedforward network can effect. Next, we
show a transformation that no single neuron can effect but a
network consisting of two neurons can. After this, we prove
a result which shows that a class of architectures that sharea
certain structural property also share in their inability in ef-
fecting a particular class of transformations. Notably, while
this class of architectures has networks with arbitrarily many
neurons, we show a class of networks with just two neurons
which can effect this class of transformations. The interested
reader is directed to Online Resource B for some technical
remarks concerning the mechanics of proving complexity
results that are not central to the exposition here.

12 Recall that the neurons considered in this work are deterministic.

Before establishing complexity results, we point out that
it is straightforward to construct a transformation that cannot
be effected by any feedforward network. One of its input
spike-train ensembles with the prescribed output is shown
in Figure 7(a). For largerT , the shaded region is simply
replicated over and over again. Informally, the reason this
transformation cannot be effected by any network is that,
for any network, beyond a certain value ofT , the shaded
region tends to act as a “flush”, erasing “memory” of the
first input spike. When the network receives another input
spike, it is in the exact same “state” it was when it received
the first input spike, and therefore cannot produce an output
spike after the second input spike.

Next, we prove that the set of feedforward networks with
at most two neurons is more complex than the set of single
neurons. The proof is by prescribing a transformation which
cannot be done by any single neuron. We then construct a
network with two neurons that can indeed effect this trans-
formation. Note that in the statement of the theorem below,
m stands for the number of input spike trains.

Theorem 1. Suppose m ≥ 2. Let Σ be the set of feedfor-
ward networks with at most two neurons that each receive
an input spike-train ensemble of order m. Then, Σ is more
complex than the set of single neurons of order m.

Proof. We first prescribe a transformation, prove that it can-
not be effected by a single neuron and then construct a two-
neuron network and show that it can indeed effect the same
transformation.

We first prove the result form = 2 and later indi-
cate how it can be extended for larger values ofm. Let the
two input spike-trains in each input spike-train ensemble,
which satisfies a Flush Criterion beI1 andI2. Figure 7(b)
illustrates the transformation. Informally,I1 has regularly-
spaced spikes starting after time instantT until 0. I2 has two
spikes, with the first one, loosely speaking, in the “middle”
of (0, T ) and the second one at the end, i.e. right before time
instant0. An output spike is always prescribed after the sec-
ond spike inI2 occurs, and not elsewhere. For largerT , the
number of spikes onI1 increases so as to maintain the same
regular spacing;I2, in contrast, still has just two spikes, the
first one roughly in the middle and the second in the end. For
the sake of exposition, we call the distance between consec-
utive spikes onI1, one time unit and we number the spikes
of I1 with the first spike being the oldest one.

More precisely, the transformation is prescribed for a
subset ofFm, whose elements are indexed byi = 1, 2, · · · .
Figure 7(b) illustrates the transformation, fori = 2. Theith
input spike-train ensemble in this subset satisfies aT -Flush
criterion, whereT = 4i + 3 time units. In theith spike-
train ensemble,I2 has spikes at time instants at which spike
numbers2i + 1 and4i + 3 occur inI1. Finally, the output
spike-train corresponding to theith input spike-train ensem-
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Fig. 8 (a) The network that can effect the transformation described in
Figure 7(b). (b) Figure describing the operation of this network.

ble has exactly one spike after13 the time instant at whichI1
has spike number4i+ 3.

Next, we prove that the transformation prescribed above
cannot be effected by any single neuron. For the sake of
contradiction, suppose it can, by a neuron with associated
Υ andρ. Let max(Υ, ρ) be bounded from above byk time
units. We show that fori ≥ ⌈k

2 ⌉, theith input spike-train en-
semble cannot be mapped by this neuron to the prescribed
output spike train. Fori = ⌈k

2 ⌉, consider the membrane po-
tential of the neuron after the time instants correspondingto
the(k + 1)th spike number and(2k + 3)rd spike number of
I1. At each of these corresponding time instants, the input
received in the pastk time units and the output produced by
the neuron in the pastk time units are the same. Therefore,
the neuron’s membrane potential must be identical as well.
However, the transformation prescribes no spike in one of
the first time instants and a spike in the second, which is a
contradiction. It follows that no single neuron can effect the
prescribed transformation.

We now construct a two-neuron network which can carry
out the prescribed transformation. The network is shown in
Figure 8(a).I1 andI2 arrive instantaneously atN2. I1 ar-
rives instantaneously atN1 butI2 arrives atN1 after a delay
of 1 time unit. Spikes output byN1 take one time unit to
arrive atN2, which is the output neuron of the network. The
functioning of this network fori = 2 is described in Fig-

13 Strictly speaking, the output spike happens at4i + 3 + ǫ, where
ǫ > 0 is a small real number. Henceforth whenever we say an output
spike isafter a certain time instant, we mean it in this sense.

ure 8(b). The generalization for largeri is straightforward.
All inputs are excitatory.N1 is akin to the neuron described
in Figure 1, in that while the depolarization due to a spike
in I1 causes potential to cross threshold, if, additionally, the
previous output spike happened one time unit ago, the asso-
ciated hyperpolarization is sufficient to keep the membrane
potential below threshold now. However, if there is a spike
from I2 also at the same time as fromI1, the depolarization
is sufficient to cause an output spike, irrespective of if there
was an output spike one time unit ago. TheΥ correspond-
ing toN2 is shorter than1 time unit. Further,N2 produces a
spike if and only if all three of its afferent synapses receive
spikes at the same time. In the figure,N1 spikes after times
1, 3, 5. It spikes after6 because it received spikes both from
I1 andI2 at that time instant. Subsequently, it spikes after
8 and10. The only time whereinN2 received spikes at all
three synapses at the same time is at11, after which is the
prescribed time for the output spike. The generalization for
largeri is straightforward.

For largerm, to construct a transformation that cannot
be done by a single neuron but can be, by a two-neuron net-
work, one can just have the same input asI1 or I2 on the
extra input spike trains and the same proof generalizes eas-
ily.

The previous result might seem to suggest that the more
the number of neurons (and connections between them) the
larger the variety of transformations possible. The next com-
plexity result demonstrates, on the contrary, that the struc-
ture of the network architecture is crucial. That is, we can
construct network architectures with arbitrarily large num-
ber of neurons which cannot perform transformations that a
two-neuron network with simple neurons can.

First, we define the structural property that characterizes
this class of architectures.

Definition 7 (Path-plural Network). A feedforward network
of orderm is calledpath-plural if for every set ofm paths,
where theith path starts atith input vertex and ends at the
output vertex, the intersection of them paths is exactly the
output vertex.

Every feedforward network in which all the inputs aren’t
afferent on every neuron, must have embedded within it a
path-plural network. For this reason, path-plural networks
are an important and ubiquitous class of feedforward net-
works. How large such networks are in the brain remains to
be seen, and this will become clearer as we get more and
more data from the connectomics efforts. But, it is conceiv-
able that such networks exist in feedforward pathways that
that converge onto networks that, for example, integrate in-
formation from multiple sensory modalities.
We now state and prove the complexity result.

Theorem 2. For m ≥ 3, let Σ1 be the set of all path-plural
feedforward networks of order m. Let Σ2 be the union of Σ1
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Fig. 9 A transformation that no feedforward network of order3 with a
path-plural architecture can effect.

with the set of all two-neuron feedforward networks of order
m. Then, Σ2 is more complex than Σ1.

Proof. We first prescribe a transformation, prove that it can-
not be effected by any network inΣ1 and then construct a
two-neuron network and show that it can indeed effect the
same transformation.

We prove the theorem form = 3; the generalization for
largerm is straightforward. The following transformation is
prescribed form = 3. Let the three input spike-trains in each
input spike train ensemble, which satisfies a Flush Criterion
be I1, I2 and I3. As before, we will use regularly spaced
spikes; we call the distance between two such consecutive
spikes one time unit and number these spike time instants
with the oldest being numbered 1; we call this numbering
the spike index. Again, the transformation is prescribed for a
subset ofFm, whose elements are indexed byi = 1, 2, · · · .
Figure 9 illustrates the transformation fori = 2. The ith
input spike-train ensemble in the subset satisfies aT -Flush
Criterion for T = 4im time units. The first2i time units
have spikes onI2 spaced one time unit apart, the next2i on
I3 and so forth. In addition, at spike index2im, Im has a
single spike. The input spike pattern from the beginning is
repeated once again for the latter2im time units. The pre-
scribed output spike-train has exactly one spike after spike
index4im.

Next we prove that the transformation prescribed above
cannot be effected by any network inΣ1. For the sake of
contradiction, assume that there exists a networkN ∈ Σ1

that can effect the transformation. LetΥ and ρ be upper
bounds on the same parameters over all of the neurons in
N and letd be the depth ofN . By construction ofΣ1, every
neuron inN that is afferent on the output neuron receives
input from at mostm− 1 of the input spike-trains; for, oth-
erwise there would exist a set ofm paths, one from each
input vertex to the output neuron, whose intersection would
contain the neuron in question. The claim, now, is that for
i > Υd

2 + ρ, the output neuron ofN has the same mem-
brane potential at spike index2im and4im, and therefore
either has to spike at both those instants or not. Intuitively,
this is so because each neuron afferent on the output neuron
receives a “flush” at some point after2im, so that the output
produced by itΥ milliseconds before time index2im and

PAST

(b)

(a)

I1

I2

I3

N2

N1

N1 OUTPUT

OF N1

I1

I2

I3

OF N2

OUTPUT

DELAYED

OUTPUT

Fig. 10 (a) Network that can effect the transformation described in
Figure 9. (b) Figure describing the operation of this network.

Υ milliseconds before time index4im are the same. This is
straightforward to verify.

We now construct a two-neuron network that can effect
this transformation. The construction is similar to the one
used in Theorem 1. Form = 3, the network is shown in
Figure 10.I1, I2 and I3 arrive instantaneously atN1 and
N2. Spikes output byN1 take two time units to arrive atN2,
which is the output neuron of the network. The function-
ing of this network fori = 2 is described in Figure 10(b).
The generalization for largeri is straightforward. All inputs
are excitatory.N1 is akin to the the neuronN1 used in the
network in Theorem 1 except that that periodic input may
arrive from any one ofI1, I2 or I3. As before, if two in-
put spikes arrive at the same time, as in spike index2im, the
depolarization is sufficient to cause an output spike inN1, ir-
respective of if there was an output spike one time unit ago.
Again, theΥ corresponding toN2 is shorter than1 time unit
andN2 produces a spike if and only if three of its afferent
synapses receive spikes at the same time instant. As before,
the idea is that at time2im, N2, receives two spikes, but not
a spike fromN1, since it is “out of sync”. However, at time
4im, additionally, there is a spike fromN1 arriving atN2,
which causesN2 to spike.

To conclude, what we have demonstrated in this section
is that, for certain classes of networks, just by knowing the
architecture of the network, we can rule out computations
that the network could be doing. All we assumed was that
the neurons in the network satisfy a small number of elemen-
tary properties; notably these results do not require knowl-
edge of detailed physiological properties of the neurons in
the network. This, in itself, is somewhat surprising due to the
intuitively-appealing expectation that network structure may
not impose as strong a constraint as neurophysiology inso-
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far as the computational ability of a network is concerned.
In the next section, however, we show that this intuition is
sound in some cases by proving that there are limits to the
constraints imposed by network structure in the presence of
very limited information on the physiology.

9 Limits to constraints imposed by network structure

The main thrust of this work, thus far, has been in demon-
strating that connectomic constraints do indeed restrict the
computational ability of certain networks, even when we do
not assume much about the physiological properties of their
neurons. As one might expect, we should be able to get bet-
ter mileage, so to speak, if we had more elaborate informa-
tion on the response properties of the individual neurons.
Conversely, it is logical to expect that there might be funda-
mental limits to what can be said about the computational
properties of networks, given very limited knowledge of the
neurophysiology of its neurons. In this section, we prove
this to be the case. In particular, we show that the small set
of assumptions made about our model neurons lead to the
absence of connectomic constraints on computation for the
class of feedforward networks of depth equal to two. More
precisely, it turns out that there does not exist a transforma-
tion that cannot be performed by any network of depth two14

that in turn can be effected by another network (of a differ-
ent architecture). What this result implies is that oneneeds
to make further assumptions on the properties obeyed by the
model neurons, before connectomic constraints on this class
of networks appear.

So, how does one prove that there does not exist a trans-
formation that cannot be performed by any network of depth
two that in turn can be effected by another network? Equiva-
lently, we need to prove that given an arbitrary feedforward
network, there exists a feedforward network of depth two
that effectsexactly the same transformation.

The difficulty in proving that every feedforward net-
work, having arbitrary depth, has an equivalent network of
depth two, appears to be in devising a way of “collaps-
ing” the depth of the former network, while keeping the
effected transformation the same. Our proof actually does
not demonstrate this head-on, but instead proves it to be the
case indirectly. The broad attack is the following: Consider
the set of transformations spanned by the set of all feed-
forward networks. Recall that this is a proper subset of the
set of all transformations, since we had shown a transfor-
mation that no feedforward network could effect. The idea
is to start off with a certain “nice” subset of the set of all
transformations and show that every transformation effected
by feedforward networks certainly lies within this subset.
Thereafter, we prove, by providing a construction, that every

14 equipped with instances of our model neurons

transformation in this “nice” subset can in fact be effected
by a feedforward network of depth two15. Together, this im-
plies that, for every transformation that can be effected bya
feedforward network, there exists a feedforward network of
depth two that can effect exactly that transformation.

The interested reader is directed to Online Resource C,
which is a 24-minute video that provides an intuitive outline
of the results in this section using animations.

Technical structure of the proof

The main theorem that we prove in this section is the
following.

Theorem 3. If T : Fm → S can be effected by a feed-
forward network, then it can be effected by a feedforward
network of depth two.

This theorem follows from the following two lemmas which
are proved in the two subsections that follow:

Lemma 6. If T : Fm → S can be effected by a feedforward
network, then T (·) is causal, time-invariant and resettable.

Lemma 7. If T : Fm → S is causal, time-invariant and
resettable, then it can be effected by a feedforward network
of depth two.

9.1 Causal, Time-Invariant and Resettable Transformations

In this section, we first define notions of causal, time-
invariant and resettable transformations16. Transformations
that are causal, time-invariant and resettable form a strict
subset of the set of all transformations. We then show that
transformations effected by feedforward networks always
lie within this subset. This is the relatively easy part of the
proof. The next subsection proves the harder part, namely
that every transformation in this subset can indeed be ef-
fected by a feedforward network of depth equal to two.

Informally, acausal transformation is one whose current
output depends only on its past input (and not current or
future input). Abstractly, it is convenient to define a causal
transformation as one that, given two different inputs thatare
identical until a certain point in time, also have their outputs,
according to the transformation, be identical up to (at least)
the same point.

15 As a by-product, the proof also ends up providing a complete char-
acterization of the set of transformations spanned by the set of all feed-
forward networks equipped with neurons of the present abstract model,
which turns out to be exactly this “nice” set.

16 Recall that when we say transformation, without further qualifica-
tion, we mean one, of the formT : Fm → S.
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Definition 8 (Causal Transformation). A transformationT :

Fm → S is said to becausal if, for every χ1, χ2 ∈ Fm,
with Ξ(t,∞)χ1 = Ξ(t,∞)χ2, for somet ∈ R, we have
Ξ[t,∞)T (χ1) = Ξ[t,∞)T (χ2).

As in signals and systems theory, atime-invariant trans-
formation is one which always transforms the time-shifted
version of an input, to a time-shifted version of its corre-
sponding output. To keep the definition sound, we also need
to ensure that the time-shifted input, in fact, also satisfies the
Flush criterion.

Definition 9 (Time-Invariant Transformation). A transfor-
mationT : Fm → S is said to betime-invariant if, for
everyχ ∈ Fm and everyt ∈ R with σt(χ) ∈ Fm, we have
T (σt(χ)) = σt(T (χ)).

A resettable transformation is one for which there exists
a positive real numberW , so that an input gap of the form
(t, t+W ) “resets” it, i.e. output beyondt is independent of
input received before it. Again, abstractly, it becomes con-
venient to say that the output in this case is identical to that
produced by an input which has no spikes beforet, but is
identical to the present input thereafter.

Definition 10 (W -Resettable Transformation). For W ∈
R

+, a transformationT : Fm → S is said to beW -
resettable if, for everyχ ∈ Fm which has a gap in the in-
terval(t, t+W ), for somet ∈ R, we haveΞ(−∞,t]T (χ) =

T (Ξ(−∞,t]χ).

Definition 11 (Resettable Transformation). A transforma-
tion T : Fm → S is said to beresettable if, there exists a
W ∈ R

+, so that it isW -resettable.

Next, we prove that every transformation that can be ef-
fected by a feedforward network is causal, time-invariant
and resettable, in the context of our neuron model and its
assumptions.

Lemma 6. If T : Fm → S can be effected by a feedforward
network, then T (·) is causal, time-invariant and resettable.

Proof sketch. If T : Fm → S can be effected by a single
neuron it is relatively straightforward to verify thatT (·) is
causal, time-invariant and resettable. That it is causal and
time-invariant follows from the fact that theP (·) function of
the neuron only “looks” at the recent past and not the present
or the future to determine membrane potential. ThatT (·) is
resettable follows from Axiom (3) of the neuron and the Gap
Lemma. For a feedforward network, the proof proceeds by
mathematical induction on the depth of the network. A full
proof is provided in Online Resource B.

9.2 Construction of a depth two feedforward network for
every causal, time-invariant and resettable transformation

In this subsection, we prove the following lemma.

Lemma 7. If T : Fm → S is causal, time-invariant and
resettable, then it can be effected by a feedforward network
of depth two.

Before diving into the proofs, we offer some intuition.
Suppose we had a transformationT : Fm → S which is

causal, time-invariant and resettable. For the moment, pre-
tend it satisfies the following property: There exist constant-
sized input and output “windows” so that, for every input
spike-train ensemble satisfying a flush criterion, just given
knowledge of spikes in those windows of past input and out-
put, one can unambiguously determine, at any point in time,
if the transformation prescribes an output spike or not. Intu-
itively, it seems reasonable that such a transformation canbe
effected by a single neuron17 by setting theΥ andρ of the
neuron to the sizes of the input and output windows men-
tioned above.

Of course, one easily sees that not every transforma-
tion that is causal, time-invariant and resettable satisfies the
aforementioned property. That is, there could exist two dif-
ferent input instances, whose past inputs and outputs are
identical in the aforementioned windows at some points in
time; yet in one instance, the transformation prescribes an
output spike, whereas it prescribes none in the other. Indeed,
the two input instances must differ at some point in the past,
for otherwise the transformation would not be causal. There-
fore, in such a situation, it is natural to ask if a single “in-
termediate” neuron can “break the tie”. That is, if two input
instances differ at some point in the past, the output of the
intermediate neuron since then, in any interval of time of
lengthU , must be different in either case, whereU is a fixed
constant. This is so that a neuron receiving input from the
intermediate neuron candisambiguate the two inputs, were
an output spike demanded for one input but not the other.
Unfortunately, this exact property cannot be achieved by any
single “tie-breaker” neuron because every transformationin-
duced by a neuron is resettable. In other words, the problem
is that, suppose two input instances differ at a certain point
in time; however, since then, both have had an arbitrarily
large input gap. The input gap serves to “erase memory”
in any network that received it and therefore it cannot dis-
ambiguate two inputs beyond this gap. Now, fortunately, it
does not have to, since this gap also causes a “reset” in the
transformation (which is resettable). That is, if such an arbi-
trarily large gap were present in the input, the transformation
would not afterward demand an output spike in one case and
no output spike in another. This is because it isW -resettable
and therefore cannot make such demands, for input gaps18

larger thanW . Thus, we can make do with a slightly weaker
condition; that the intermediate neuron is only guaranteedto

17 Strictly speaking, it turns out that this is not true; axiom 2 may be
violated.

18 which we call a “reset gap” from now on, for the sake of exposi-
tion.
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O

J

Fig. 11 The network architecture for (order two) feedforward net-
works of depth two equipped with model neurons described in Section
3 that can effect any causal, time-invariant and resettable transforma-
tion.

break the tie, when it is required to do so. That is, suppose
there are two input instances, whose outputs according to
T : Fm → S are different at certain points in time. Then,
the corresponding inputs are different too at some point in
the past with no reset gaps in the intervening time and there-
fore the intermediate neuron ought to break the tie. Addi-
tionally, for technical reasons that will become clear later,
we stipulate that the outputs of the intermediate neuron in
the precedingU milliseconds are guaranteed to be different,
only if the inputs themselves in the pastU milliseconds are
not different.

The network we have in mind is illustrated in Figure 11,
for m = 2. In the following proposition, we prove that if the
intermediate neuron satisfies the “tie-breaker” conditional-
luded to above, then there exists an output neuron, so that the
network effects the transformation in question. Thereafter,
in the subsequent proposition, we provide a construction for
the intermediate neuron that satisfies this condition. By way
of notation, recall thatΞ0(·) is shorthand forΞ[0,0](·)

Proposition 2. Let T : Fm → S be causal, time-invariant
and resettable. Let J be a neuron with TJ : Fm → S , so
that for each χ ∈ Fm, TJ(χ) is consistent with χ with re-
spect to J. Further, suppose there exists a U ∈ R

+ so that
for all t1, t2 ∈ R and χ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6=
Ξ0σt2(T (χ2)), we have Ξ(0,U)(σt1(TJ(χ1) ⊔ χ1)) 6=
Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)).

Then, there exists a neuron O, so that for every χ ∈ Fm,
T (χ) is consistent with TJ(χ) ⊔ χ with respect to O.

Proof sketch. The straightforward way for the neuronO to
effect T (·) is to determine the points of time wherein an
output spike is prescribed and set its membrane potential
function to hit threshold at those instances. Since the neuron
J essentially “disambiguates” the input, this assignment can
be done without conflict. However, we also need to show
that doing this does not violate any of the three axioms of
our abstract model, for the neuronO. Axiom (1) follows
easily from the fact that the co-domain ofT (·) is S. Ax-
iom (3) takes some work to show and uses the fact thatT (·)
is causal, time-invariant and resettable. Axiom (2), on the

other hand, presents some subtleties. Now, in addition to set-
ting membrane potential to threshold at the aforementioned
points, in order to satisfy Axiom (2), we would also need to
set it to hit threshold, when the input window has the same
pattern and the output window is empty instead. However,
with this assignment, we need to then show that no spuri-
ous spikes are generated. This takes a little work and again
uses the “tie-breaker” condition of the intermediate neuron
J. The full proof is available in Online Resource B.

The next proposition shows that one can always con-
struct an intermediate neuron that satisfies the said “tie-
breaker” condition.

Proposition 3. Let T : Fm → S be causal, time-
invariant and resettable. Then there exists a neuron J and
U ∈ R

+ so that for all t1, t2 ∈ R and χ1, χ2 ∈
Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we have
Ξ(0,U)(σt1(TJ(χ1) ⊔ χ1)) 6= Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)),
where TJ : Fm → S is such that for each χ ∈ Fm, TJ(χ) is
consistent with χ with respect to J.

Proof idea. The basic idea is to “encode”, in the time differ-
ence of two successive output spikes, the positions of all the
input spikes that have occurred since the last input gap of the
form (t, t +W ), whereT (·) is W -resettable. Such pairs of
output spikes are produced once everyp milliseconds, with
the time difference within each pair being a function of the
time difference within the previous pair and the input spikes
encountered since. Intuitively, it is convenient to think of this
encoding as one from which we can “reconstruct” the entire
past input spike-train ensemble after the last reset gap in the
input. We first describe the encoding function for the case of
a single input spike-train after which we indicate how it can
be generalized.

So, suppose the time difference of the successive spikes
output byJ lies in the interval[0, 1). Define the encoding
function asε0 : [0, 1)× S̄(0,p] → [0, 1), that takes in the old
encoding and the input spikes in the pastp milliseconds to
produce the new encoding, which is output byJ as the time
difference between a new pair of spikes. The numberp is
chosen to be such that there are at most8 spikes in any in-
terval of the form(t, t+p]. We now describe howε0(e,x) is
computed, givene ∈ [0, 1) andx = 〈x1, x2, . . . , xk〉, such
that each spike time inx lies in the interval(0, p]. Lete have
a decimal expansion19, so thate = 0.c1s1c2s2c3s3 · · · . Ac-
cordingly, letc = 0.c1c2c3 · · · ands = 0.s1s2s3 · · · . c is a
real number that encodes the number of spikes in each inter-
val of lengthp encountered, since the last reset. Since each
interval of lengthp has between0 and 8 spikes, the digit

19 Whenever we say decimal expansion, we forbid decimal expan-
sions with an infinite number of successive9s. With this restriction,
each real number has a unique decimal expansion.
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Fig. 12 This figure illustrates the operation of the intermediate neuron
J. Supposeχ ∈ Fm is an input spike-train. Let its oldest spike beT
milliseconds ago. ThenJ produces a spike at time20T − p and at every
T − kp, for k ∈ Z

+, unless in the previousp milliseconds to when
it is to spike, there is a gap21of the form(t, t + W ). For the sake of
exposition, let’s call these the “clock” spikes. Now, suppose there is a
gap of the form(t, t + W ) in the input and there is an input spike at
time t, then the neuron spikes at timet − p and everyp milliseconds
thereafter subject to the same “rules” as above. These clock spikesare
followed by “encoding” spikes, which occur at leastq milliseconds af-
ter the clock spike, but less thanq + r milliseconds after, whereq is
greater than the absolute refractory periodα. As expected, the posi-
tion of the current encoding spike is a function of the time difference
between the previous encoding and clock spikes22and the positions of
the input spikes in thep milliseconds before the current clock spike.
The output of the encoding function is, in effect, appropriately scaled
to “fit” in this interval of lengthr; the details are available in the proof.

9 is used as a “termination symbol”. So, for example, sup-
pose there have been4 intervals of lengthp, since the last
reset with5, 0, 8 and2 spikes apiece respectively, thenc =
0.8059 andc′ = 0.28059, wherec′ is the “updated” value of
c. Likewise,s is a real number that stores the positions of all
input spikes encountered since the last reset. Let each spike
time be of the formxi = 0.xi

1x
i
2x

i
3 · · ·×10q, for appropriate

q, whose value is fixed for a givenp. Then the updated value
of s is s′ = 0.x1

1x
2
1 · · ·x

k
1s1x

1
2x

2
2 · · ·x

k
2s2 · · · . Suppose the

c′ ands′ obtained above were of the formc′ = 0.c′1c
′
2c

′
3 · · ·

ands′ = 0.s′1s
′
2s

′
3 · · · , thenε0(e,x) = 0.c′1s

′
1c

′
2s

′
2 · · · . Ob-

serve that the decimal expansion constructed byε0(e,x)

cannot have infinitely many successive9s, for c′ has only
a finite number of non-zero digits. Suppose the input were a
spike-train ensemble of orderm, then for each spike-train an
encoding would be computed as above and in the final step,
them real numbers obtained would be interleaved together,
so as to produce the encoding.

Given knowledge of the encoding function, Figure 12
briefly describes howJ works. The claim then is that if two
input spike-train ensembles are different at some point with
no intervening “reset” gaps, then the output ofJ in the past
U milliseconds, whereU = p + q + r will be different.
Intuitively, this is because the difference between the latest
encoding and clock spike in each case would be different, as

20 i.e.p milliseconds after time instantT .
21 We setW > p to force a spike atT − p.
22 unless the present clock spike is the first after a reset gap in the

input.

they encode different “histories” of input spikes. The excep-
tion is if the input spike-train ensembles differed only in the
pastU milliseconds. In this case, the difference is commu-
nicated toO directly byχ.

Finally, we ought to remark that the above is just an in-
formal description that glosses over several technical details
contained in the full proof, which is available in Online Re-
source B.

The preceding two propositions thus imply Lemma 7 which
together with Lemma 6 implies Theorem 3.

Lemma 7. If T : Fm → S is causal, time-invariant and
resettable, then it can be effected by a feedforward network
of depth two.

Theorem 3. If T : Fm → S can be effected by a feed-
forward network, then it can be effected by a feedforward
network of depth two.

Corollary 2. The set of all feedforward networks is not more
complex than the set of feedforward networks of depth equal
to two.

Incidentally, Lemma 6 and 7 also lead to a full char-
acterization of the class of transformations effected by all
feedforward networks equipped with neurons obeying the
abstract model of Section 3. This is formalized in the next
theorem.

Theorem 4. A transformation T : Fm → S can be effected
by a feedforward network if and only if it is causal, time-
invariant and resettable.

Directions for further constraining the present model

The results of this section imply that we need to add new
properties to further constrain our model neurons, in or-
der for complexity results involving feedforward networks
of depth two to be manifested. There are a number of di-
rections that one could take. One is that spike-times in the
present model are real numbers. When stochastic variability
in neurons is taken into account, this assumption is no longer
true. Also, we did not assume that the membrane potential
changes smoothly with time, which would be a reasonable
assumption to add. And, finally, an assumption consistent
with Dale’s principle, that each neuron has either an exci-
tatory effect on all its postsynaptic neurons or an inhibitory
effect might also help in this direction.

10 Discussion

There has been some debate about how useful data from
the connectome projects might be in advancing a mechanis-
tic understanding of computation occurring in the circuits
of the brain. One of the main type of arguments that has
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been made against their utility is that, since these projects
only23 seek to ascertain the wiring diagram, without giving
us detailed physiological information, it is not clear what
we might learn from this data alone, especially for networks
whose high-level function is not known. While it is acknowl-
edged that network architecture places constraints on what
a network can compute (Kleinfeld et al, 2011; Denk et al,
2012), the nature and scope of these constraints have re-
mained poorly understood. Our goal with this work was in
asking, on one hand, if we can deduce non-trivial examples
of computations that a networkcould not be doing, given
just the knowledge of its architecture and assuming that
the neurons obey some elementary properties. On the other
hand, we asked if there are fundamental limits to what can be
said, given just this information. We examined this question
for the case of feedforward networks equipped with neurons
that obeyed a deterministic spiking neuron model. We first
set the stage by creating a mathematical framework in which
this question could be precisely posed. Crucially, we needed
to make precise what computation exactly meant in this con-
text. This took a fair bit of work and led us to the view of
feedforward networks as spike-train to spike-train transfor-
mations under biologically-relevant spiking regimes. After
setting up necessary definitions, we then showed some ex-
amples of transformations that networks of specific architec-
turescannot effect, that other networks can. First of all, we
showed24 that there exist spike-train to spike-train transfor-
mations that no feedforward network could effect. Next, we
showed a transformation that no single neuron could effect
but a network consisting of two neurons could. After this,
we proved a result which shows that a class of architectures
that share a certain structural property also share their inabil-
ity to effect a particular class of transformations. Notably,
while this class of architectures has networks with arbitrar-
ily many neurons, we showed a class of networks with just
two neurons which could effect this class of transformations.
This suggests that network structure alone may impose cru-
cial constraints on computational ability. Finally, we demon-
strated that the small number of properties assumed for our
model neurons can only take us so far. We proved that with-
out making further assumptions about our model neurons,
we couldn’t discern such examples for the set of all feedfor-
ward networks of depth two.

While there is more to neuronal networks than just their
wiring diagram, what our theory suggests is that the wiring
diagram could impose crucial constraints on the computa-
tional ability of networks, in some cases. On the other hand,
there seem to be classes of networks for which a more elab-
orate knowledge of single neuron properties may be neces-
sary, before we can determine restrictions on their computa-

23 This in itself is a formidable problem and one that is taking heroic
effort.

24 See Figure 7(a) and the second paragraph of Section 8.

tional ability. While technical issues in electron microscopy
(Denk et al, 2012) have so far stood in the way of mapping,
for example, distributions of ion-channels and neurotrans-
mitter and neuromodulator receptors in neurons, it is con-
ceivable that such hurdles may be overcome in future. If
successful, these or other advances in conjunction with the
wiring diagram could provide useful information to help us
tease out pertinent constraints on the computational capabil-
ities of these networks.

In this work, as a first step, we have aimed to demon-
strate specificexamples of computations that a network can-
not accomplish, given its architecture. The more ambitious
goal would be the ability to have an exact characterization
of the set ofall computations that a given neural circuit can-
not perform, given knowledge of its architecture, to the ex-
tent that a given incomplete knowledge of the physiological
properties of its neurons will allow. This is not necessarily
a goal that is out of reach. Even in the present work, we
have obtained such an exact characterization25 of the set of
all computations that the set of feedforward networks cannot
accomplish, given the set of properties that our model neu-
rons are presently assumed to obey. Therefore, in principle,
there seems to be no reason why we may not be able to do
likewise for specific network architectures.
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