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Online Resource A: Relationship of the abstract neuron modelto some widely-used
neuron models

Here, we demonstrate that the properties that our abstract model of the neuron is contingent
on are satisfied, up to arbitrary accuracy, by several widely-used neuron models such as the
Leaky Integrate-and-Fire Model and Spike Response Model.

Leaky Integrate-and-Fire Model

Consider the standard form of the Leaky Integrate-and-FireModel:

τm
du

dt
= −u(t) +RI(t) (1)

whereτm = RC. Whenu(t(f)) = v, the neuron fires a spike and the reset is given by
u(t(f)+∆) = ur, wherev is the threshold and∆ is the absolute refractory period. Suppose
an output spike has occurred at timet̂−∆, the above differential equation has the following
solution:

u(t) = ur exp(−
t− t̂

τm
) +

1

C

∫ t−t̂

0

exp(−
s

τm
)I(t− s)ds (2)

SupposeI(t) = ΣjwjΣiα(t− t
(i)
j ) andα(·) had a finite support. Then, it is clear from

the above expression that the contribution of the previous output spike fired by the present
neuron as well as the contribution of input spikes from presynaptic neurons decays exponen-
tially with time. Therefore, one can compute the membrane potential to arbitrary accuracy
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by choosing input and output “windows” of appropriate size so thatu(·) is a function only
of input spikes and output spikes in those windows. It is easyto verify that the all the axioms
of our model are satisfied: Clearly, the model above has an absolute refractory period, a past
output spike has an inhibitory effect on membrane potential, and upon receiving no input
and output spikes in the said windows, it settles to resting potential. Thus, an instantiation
of our abstract model can simulate a Leaky Integrate-and-Fire Model to arbitrary accuracy.

Spike Response Model

Consider now the standard form of the Spike Response Model(Gerstner and Kistler, 2002).
In the absence of spikes, the membrane potentialu(·) is set to the valueur = 0. Other-

wise, the membrane potential is given by

u(t) = η(t− t̂i) +Σj wj Σi ǫij(t− t̂i, t− t
(i)
j ) (3)

whereη(·) describes the after-hyperpolarization after an output spike att̂i andǫij(·) de-

scribes the response to incoming spikest
(i)
j , which are the spikes fired by presynaptic neuron

j with wj being synaptic weights.η(·), is set to a sufficiently low value for∆ milliseconds
after an output spike so as not to cause another spike, where∆ is the absolute refractory
period. The functionsη(·) andǫij(·) typically decay exponentially with time and therefore,
as before, one can compute the membrane potential to arbitrary accuracy by choosing input
and output “windows” of appropriate size so that theu(·) is a function only of input spikes
and output spikes in those windows. Likewise, it is easy to verify that the all the axioms of
our model are satisfied: Clearly, the model above has an absolute refractory period, a past
output spike has an inhibitory effect on membrane potential, and upon receiving no input
and output spikes in the said windows, it settles to resting potential. Thus, it is straightfor-
ward to verify that an instantiation of our abstract model can simulate a Spike Response
Model to arbitrary accuracy.
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Online Resource B: Proofs and Technical Remarks

Technical Remarks from Section 4

It might be argued that the input spike-train to a neuron cannot possibly be infinitely long,
since every neuron begins existence at a certain point in time. However, this begs the ques-
tion whether the neuron was at the resting potential when thefirst input spikes arrived1. An
assumption to this effect would be significant, particularly if the current membrane potential
depended on it. It is easy to construct an example along the lines of the example described
in Figure 1, where the current membrane potential is different depending on whether this as-
sumption is made or not. Assuming infinitely long input spike-train ensembles, on the other
hand, obviates the need to make any such assumption. We retain this viewpoint for the rest
of the paper with the understanding that the alternative viewpoint discussed at the beginning
of this paragraph can also be expounded along similar lines.

Proofs from Section 5

Proof of Gap Lemma.Since, in eachx0 consistent withχ, with respect toN, the interval
(t + 2ρ, t + 3ρ) of x0 and the(t + Υ + ρ, t + Υ + 2ρ) of χ are arbitrary, the sequence of
spikes present in the interval(t + ρ, t + 2ρ) of x0 could be arbitrary. However,χ∗ andχ
are identical in(t, t + ρ + Υ ). Thus, it follows from Axiom 2 in the formal definition of
a neuron that for everyt′ ∈ (t, t + ρ), P (Ξ(0,Υ )(σt′(χ)), Ξ(0,ρ)(σt′(x0))) is at most the
value ofP (Ξ(0,Υ )(σt′(χ

∗)), Ξ(0,ρ)(σt′(x
∗
0))) , becauseΞ(0,ρ)(σt′(x

∗
0)) is φ, i.e. empty.

SinceP (Ξ(0,Υ )(σt′(χ
∗)), Ξ(0,ρ)(σt′(x

∗
0))) is less thanτ for everyt′ ∈ (t, t+ ρ),

P (Ξ(0,Υ )(σt′(χ)), Ξ(0,ρ)(σt′(x0))) is less thanτ in the same interval, as well. Therefore,
x0 has no spikes in(t, t+ ρ).

That 2ρ is the smallest possible gap length inx∗
0 for this to hold, follows from the

counterexample in Figure 1, where the present conclusion did not hold, whenx∗
0 had gaps

of length2ρ− δ, for arbitrarily smallδ > 0.

Proof of Corollary 1. (1) is immediate from the Gap Lemma, when we setχ = χ∗.
For (2), the proof is by strong induction on the number of spikes sincet. Let x0 be

an arbitrary spike-train that is consistent withχ∗, with respect toN. Notice that from
(1) we have thatx0 is identical tox0

∗ in (t, t + ρ). The base case is to show that both
x0

∗ andx0 have their first spike sincet at the same time. Assume, without loss of gen-
erality, that the first spike ofx0 at t1 ≤ t, is no later than the first spike ofx0

∗. We
haveP (Ξ(0,Υ )(σt1(χ

∗)), Ξ(0,ρ)(σt1(x
∗
0))) = P (Ξ(0,Υ )(σt1(χ

∗)), Ξ(0,ρ)(σt1(x0))) since
Ξ(0,ρ)(σt1(x

∗
0)) = Ξ(0,ρ)(σt1(x0)) = φ. Thereforex∗

0 also has its first spike sincet at t1.
Let the induction hypothesis be that bothx∗

0 andx0 have their firstk spikes sincet at the
same times. We show that this implies that the(k + 1)th spike in each spike-train is also at
the same time instant. Assume, without loss of generality, that the(k+1)th spike sincet of
x0 at tk+1, is no later than the(k + 1)th spike sincet of x0

∗. Now,Ξ(0,ρ)(σtk+1
(x∗

0)) is
identical toΞ(0,ρ)(σtk+1

(x0)) from the induction hypothesis since(t+ρ)−tk+1 ≥ ρ. Thus,
P (Ξ(0,Υ )(σtk+1

(χ∗)), Ξ(0,ρ)(σtk+1
(x∗

0))) = P (Ξ(0,Υ )(σtk+1
(χ∗)), Ξ(0,ρ)(σtk+1

(x0)))

and thereforex∗
0 also has its(k + 1)th spike attk+1. This completes the proof of (2).

1 Note that our axiomatic definition of a neuron does not addressthis question.
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(3) follows from the Gap Lemma and (2).

Proposition 1. Letχ be a spike-train ensemble that satisfies a T-Gap criterion for a neuron
N〈α, Υ, ρ, τ, λ,m, P : S̄m

(0,Υ ) × S̄(0,ρ) → [λ, τ ]〉, whereT ∈ R
+. Then, there is exactly one

spike-trainx0, such thatx0 is consistent withχ, with respect toN.

Proof of Proposition 1.Sinceχ satisfies aT -Gap criterion, there exists a spike-trainx0 with
at least one gap of length2ρ in every interval of time of lengthT − Υ + 2ρ, so thatx0 is
consistent withχ with respect toN. For the sake of contradiction, assume that there exists
another spike-trainx0

′, not identical tox0, which is consistent withχ, with respect toN.
Let t′ be the time at which one spike-train has a spike but another doesn’t. Lett > t′ be such
thatx0 has a gap in the interval(t, t + 2ρ). By Corollary 1 to the Gap Lemma, it follows
thatx0

′ is identical tox0 after time instantt+ ρ. This contradicts the hypothesis thatx0
′ is

different fromx0 at t’.

Lemma 2. Consider a feedforward networkN . Let χ satisfy aT -Gap criterion forN ,
whereT ∈ R

+. Then the output neuron ofN produces a unique output spike-train whenN
receivesχ as input. Furthermore, the membrane potential of the outputneuron at any time
instant depends on at most the pastT milliseconds of input inχ.

Proof of Lemma 2.We prove that the output of the network is unique by strong induction
on depth. LetNi, for 1 ≤ i ≤ d, be the set of neurons inN of depthi. Each neuronN ∈ N1

receives all inputs from spike-trains inχ. Since,N satisfies a Gap criterion with those input
spike-trains, its output is unique. The induction hypothesis then is that for alli ≤ k < d,
each neuronN ∈ Ni produces a unique output spike-train whenN is driven byχ. Consider
arbitraryN′ ∈ Nk+1. It is clear that all inputs toN′ are from spike-trains fromχ or neurons
in

⋃k
i=1 Ni, for otherwise the depth ofN′ would be greater thank + 1. Since, all its inputs

are unique by the induction hypothesis and they satisfy a Gapcriterion forN′, its output is
also unique.

Next, we show that the membrane potential of the output neuron at any time instant
depends on at most the pastT milliseconds of input inχ. Since the output neuron satis-
fies a(Td )-Gap Criterion, its membrane potential at any point dependson at most the past
(Td ) milliseconds of the inputs it receives (some of which may be output spike-trains of
other neurons). Consider one such “penultimate layer” neuron. Again, its output membrane
potential at any time instant, likewise, depends on its inputs in the past(Td ) milliseconds.
Therefore, the current potential of the output neuron is dependent on the input received by
the penultimate layer neuron in at most the past(2Td ) milliseconds. Similar arguments can
be put forth until, for each path, one reaches a neuron, all ofwhose inputs do not come
from other neurons. Since the longest such path is of lengthd, it is straightforward to verify
that the membrane potential of the output neuron depends on at mostT milliseconds of past
input inχ.
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Fig. 1 Illustration showing that an input spike-train ensemble satisfying a Flush Criterion also satisfies a Gap
Criterion.

Proofs from Section 6

Lemma 3. An input spike-train ensembleχ for a neuronN〈α, Υ, ρ, τ, λ,m, P : S̄m
(0,Υ ) ×

S̄(0,ρ) → [λ, τ ]〉 that satisfies aT -Flush Criterion also satisfies a(T + 2Υ + 2ρ)-Gap
Criterion for that neuron.

Proof of Lemma 3.Figure 1 accompanies this proof. The neuron on being driven by χ can-
not have output spikes outside the interval(−Υ, T ). This easily follows from Axiom 2 and
3 of the neuron because the neuron does not have input spikes before time instantT and in
the interval(−Υ, 0) and onwards. Now, to see thatχ satisfies a(T + 2Υ + 2ρ)-Gap Crite-
rion, recall that with aT ′-Gap Criterion, distance between any two gaps of length2ρ on the
output spike-train is at mostT ′ − Υ − 2ρ. With χ, we observe that the distance between any
two 2ρ gaps on the output spike-train is at mostT + Υ . Thus,T ′ − Υ − 2ρ = T + Υ , which
gives usT ′ = T + 2Υ + 2ρ. The result follows.

Lemma 4. An input spike-train ensembleχ for a feedforward network that satisfies aT -
Flush Criterion also satisfies a(dT + d(d + 1)Υ + 2dρ)-Gap Criterion for that network,
whereΥ , ρ are upper bounds on the same parameters taken over all the neurons in the
network andd is the depth of the network.

Proof of Lemma 4.Following the proof of the previous lemma, we know that neurons that
receive all their inputs fromχ have no output spikes outside the interval(−Υ, T ). Similarly,
neurons that have depth 2 with respect to the input vertices of the network have no output
spikes outside(−2Υ, T ). Likewise, the output neuron, which has depthd, has no output
spikes outside(−dΥ, T ). It follows that the output neuron obeys a(T +(d+1)Υ +2ρ)-Gap
Criterion. Also, every other neuron obeys this criterion because the distance between the
2ρ output gaps for every neuron is at most that of the output neuron, since their depth is
bounded from above by the depth of the output neuron. Thus, from the definition of the Gap
criterion for feedforward networks, we have thatχ satisfies a(dT + d(d+1)Υ +2dρ)-Gap
Criterion for the current network.
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Proofs from Section 7

Proof of Lemma 5.We prove the easy direction first. If∃N ′ ∈ Σ2 such that∀N ∈
Σ1, TN ′ |Fm

6= TN |Fm
, then it follows thatTN ′ |G12

6= TN |G12
becauseFm ⊆ GN .

For the other direction, let∃N ′ ∈ Σ2 such that∀N ∈ Σ1, TN ′ |G12
6= TN |G12

. We con-
structF ′ ⊆ Fm, so thatTN ′ |F′ 6= TN |F′ . This immediately impliesTN ′ |Fm

6= TN |Fm
.

Consider arbitraryN ∈ Σ1. From the hypothesis, we haveTN ′ |G12
6= TN |G12

. Therefore
∃χ ∈ G12 such thatTN ′ |G12

(χ) 6= TN |G12
(χ). Additionally, there existT1, T2 ∈ R

+, so that
χ satisfies aT1-Gap Criterion forN and aT2-Gap Criterion forN ′. LetT = max(T1, T2).
LetTN ′ |G12

(χ) = x0
′ andTN |G12

(χ) = x0 . Let F̃ =
⋃

t∈R
Ξ(0,2T )(σt(χ)). Note that each

element ofF̃ satisfies a2T -Flush Criterion. The claim, then, is thatTN ′ |F̃ 6= TN |F̃ . We have
Ξ(0,T )(TN ′(Ξ(0,2T )(σt(χ)))) = Ξ(0,T )(σt(x0

′)) and Ξ(0,T )(TN (Ξ(0,2T )(σt(χ)))) =
Ξ(0,T )(σt(x0)). This follows from the fact thatχ satisfies theT -Gap Criterion with both
N andN ′ and therefore whenN andN ′ are driven by any segment ofχ of length2T , the
output produced in the latterT milliseconds of that interval agrees withx0 andx0

′ respec-
tively. Therefore, ifx0 6= x0

′, it is clear that there exists at, so thatTN ′(Ξ[0,2T ](σt(χ))) 6=

TN (Ξ[0,2T ](σt(χ))). F
′ is obtained by taking the union of such̃F for everyN ∈ Σ1. The

result follows.

Technical Remarks from Section 8

Some technical remarks concerning the mechanics of provingcomplexity results are stated
below.

For two sets of feedforward networks,Σ1 andΣ2 with Σ1 ⊆ Σ2, in order to prove that
Σ2 is more complex thanΣ1, it is sufficient to show a transformationT : Fm → S that
no network present inΣ1 can perform, while demonstrating a network inΣ2 that can effect
it. This involves constructing such a transformation, i.e.prescribing an output spike train
for every element inFm. Recall thatFm consists of spike-train ensembles of orderm, with
the property that for each such ensemble there exists a positive real numberT , so that the
ensemble satisfies aT -Flush criterion. In practice, however, it usually sufficesto prescribe
output spike trains for a small subset2 of elements ofFm, and prove that no network inΣ1

can map the input spike trains in that subset to their prescribed outputs. The second step
would involve demonstrating a network inΣ2 that maps this subset ofFm to the prescribed
output, while mapping the rest ofFm to arbitrary output spike trains. Strictly speaking then,
the transformationT : Fm → S we prescribe comprises the mapping fromFm to output
spike trains, as effected bythis network inΣ2. For convenience however, we shall refer to
the mapping prescribed for some small subset ofFm as the prescribed transformation.

The next remark concerns timescales of the parametersΥ andρ of each neuron in the
network and the timescale at which the transformation operates. Recall that the parameters
Υ andρ correspond to the timescale at which the neuron integrates inputs it receives and
the relative refractory period respectively. It would be reasonable to expect that the values
of these parameters lie within a certain range as constrained by physiology, although this
range might be different for different local neuronal networks in the brain. Suppose we have
an upper bound on the value of each such parameter. Then, whenwe prove a complexity

2 albeit typically one that contains, for each positive real numberT , at least one spike-train ensemble
satisfying aT -Flush Criterion.
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result, there would exist a timescaleT , which is a function of these upper bounds, such that
there exists a transformation on this timescale that cannotbe performed by any network
with the said architecture, whose parameters are governed by these upper bounds. More
precisely, there would exist a transformation that maps a set of inputs satisfying aT -Flush
criterion to an output spike train that (provably) cannot beperformed by any network with
the architecture in question. When stating and proving a complexity result, however, for the
sake of succinctness, we do not explicitly state the relation between these bounds and the
correspondingT . We simply letΥ , ρ andT remain unbounded. It is straightforward for the
reader to derive a bound onT as a function of bounds onΥ andρ, as discussed.

The final remark is about our neuron model and the issue of whatwe can assume about
the neurons when demonstrating that a certain networkcan effect a given transformation.
Recall that our neuron model assumes that our neurons satisfy a small number of elementary
properties but are otherwise unconstrained. This allowed our model to accomodate a large
variety of neuronal responses. This was convenient when faced with the task of showing
that no network of a certain architecture could perform a given transformation, no matter
what response properties its neurons have. However, when wewish to show that a certain
transformation can be done by a specific network, some caution is in order. In this case, it
is prudent to restrict ourselves to as simple a neuron model as possible, so that whether the
neuronal responses employed are achievable by a real biological neuron, is not in question.
In practice, we describe the neurons in the construction, sothat they can certainly be effected
by a highly-reduced neuron model such as the Spike Response Model SRM0 (Gerstner and
Kistler, 2002).

Proofs from Section 9

Proof of Lemma 6.Let N be a network that effectsT : Fm → S.
T (·) is causal.Consider arbitraryχ1, χ2 ∈ Fm with Ξ(t,∞)χ1 = Ξ(t,∞)χ2, for some
t ∈ R. We wish to show thatΞ[t,∞)T (χ1) = Ξ[t,∞)T (χ2). Let Ni, for 1 ≤ i ≤ d, be the
set of neurons inN of depthi, whered is the depth ofN . Each neuronN ∈ N1 receives all its
inputs from spike-trains inχ. When the network receivesχ1 andχ2 as input, supposeN re-
ceivesχ′

1 andχ′
2 respectively as input. Also, clearly,Ξ(t,∞)χ

′
1 = Ξ(t,∞)χ

′
2. Letx1

′ andx2
′

be the output produced byN on receivingχ′
1 andχ′

2 respectively. Sinceχ′
1, χ

′
2 ∈ Fm, there

exists aT ∈ R
+, so thatΞ[T,∞)χ

′
1 = Ξ[T,∞)χ

′
2 = φm′

, wherem′ is the number of inputs
to N. Therefore, by Axiom (3) of the neuron, we haveΞ[T,∞)x1

′ = Ξ[T,∞)x2
′ = φ. Now,

for all t′ ∈ R, Ξt′xj
′ = 〈t′〉 if and only if PN(Ξ(0,ΥN)(σt′(χ

′
j)), Ξ(0,ρN)(σt′(xj

′)) = τN,
for j = 1, 2. It is immediate that fort′ > t, we haveΞ(0,ΥN)(σt′(χ

′
1)) = Ξ(0,ΥN)(σt′(χ

′
2)).

Now, by an induction argument on the spike number sinceT , it is straightforward to show
that for all t′ > t, Ξ(0,ρN)(σt′(x1

′)) = Ξ(0,ρN)(σt′(x2
′)). Thus, we haveΞ[t,∞)x1

′ =
Ξ[t,∞)x2

′. Similarly, using a straightforward induction argument ondepth, one can show
that for every neuron in the network, its output until time instantt is identical in either case.
We therefore haveΞ[t,∞)T (χ1) = Ξ[t,∞)T (χ2).
T (·) is time-invariant. Consider arbitraryχ ∈ Fm and t ∈ R with σt(χ) ∈ Fm. We
wish to show thatT (σt(χ)) = σt(T (χ)). As before, letNi, for 1 ≤ i ≤ d, be the set of
neurons inN of depthi, whered is the depth ofN . Each neuronN ∈ N1 receives all its
inputs from spike-trains inχ. When the network receivesχ andσt(χ) as input, suppose
N receivesχ′ andσt(χ′) respectively as input. Letx1

′ andx2
′ be the output produced by

N on receivingχ′ andσt(χ′) as input respectively. We wish to show thatx2
′ = σt(x1

′).
Sinceχ′ ∈ Fm, there exists aT ∈ R

+, so thatΞ[T,∞)χ
′ = Ξ[T−t,∞)σt(χ

′) = φm′

,
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wherem′ is the number of inputs toN. Therefore, by Axiom (3) of the neuron, we have
Ξ[T,∞)x1

′ = Ξ[T−t,∞)x2
′ = φ. Now, for all t′ ∈ R, Ξt′x1

′ = 〈t′〉 if and only if
PN(Ξ(0,ΥN)(σt′(χ

′)), Ξ(0,ρN)(σt′(x1
′)) = τN. It is therefore straightforward to make an

induction argument on the spike number, starting from the oldest spike inx1
′ to show that

x1
′ has a spike at somet′ iff x2

′ has a spike att′ − t and therefore we havex2
′ = σt(x1

′).
Similarly, using a straightforward induction argument on depth, one can show that for every
neuron in the network, its output in the second case is a time-shifted version of the one in
the first case. We therefore haveT (σt(χ)) = σt(T (χ)).
T (·) is resettable.Let Υ andρ be upper bounds on those parameters over all the neurons in
N . If Υ < ρ, then set the value ofΥ = ρ. The claim is that forW = d(Υ + ρ) + ρ, T (·) is
W -resettable, whered is the depth ofN . Consider arbitraryχ ∈ Fm so thatχ has a gap in
the interval(t, t+d(Υ +ρ)+ρ), for somet ∈ R. As before, letNi, for 1 ≤ i ≤ d, be the set
of neurons inN of depthi. Each neuronN ∈ N1 receives all its inputs from spike-trains in
χ. Therefore by Axiom (3) of the neuron, it is straightforwardto see that the output ofN has
a gap in the interval(t, t+(d−1)(Υ+ρ)+2ρ). By similar arguments, we have that output of
each neuronN ∈ Ni, for 1 ≤ i ≤ d has a gap in the interval(t, t+(d−i)(Υ+ρ)+(i+1)ρ).
Thus, in particular, the output neuron has a gap in the interval (t, t+(d+1)ρ). Sinced ≥ 1,
the Gap Lemma applies, and at time instantt the output of the output neuron depends on
spikes in the interval(t, t + (Υ + ρ)) of its inputs. All inputs to the output neuron have
a gap in the interval(t, t + (Υ + ρ) + dρ), since they have depth at most(d − 1). Since
those inputs have a gap in the interval(t + (Υ + ρ), t + (Υ + ρ) + dρ), for d ≥ 2, the
Gap Lemma applies and the output neuron’s output at time instant t depends on outputs of
the “penultimate layer” in the interval(t, t + 2(Υ + ρ)). Therefore by similar arguments,
the output of the output neuron at time instantt at most depends on inputs fromχ in the
interval(t, t+d(Υ +ρ)). That is to say thatT (χ′), for everyχ′ identical toχ in the interval
(−∞, t + d(Υ + ρ)), has the same output asT (χ) in the interval[t,−∞), following the
corollary to the Gap Lemma. In particular,Ξ(−∞,t]χ is one suchχ′. We therefore have
Ξ(−∞,t]T (χ) = T (Ξ(−∞,t]χ) upon noting thatΞ(−∞,t]T (Ξ(−∞,t]χ) = T (Ξ(−∞,t]χ),
sinceT (·) has no spikes in(t,∞). Thus,T (·) is resettable.

Proof of Proposition 2.Assume that the hypothesis in the proposition is true. LetT : Fm →
S beW -Resettable for someW ∈ R

+.
We first show a construction for the neuronO, prove that it obeys all the axioms of

the abstract model and then show that it has the property thatfor everyχ ∈ Fm, T (χ) is
consistent withTJ(χ) ⊔ χ with respect toO.

We first construct the neuronO〈αO, ΥO, ρO, τO, λO,mO, PO : S̄mO

(0,ΥO)
× S̄(0,ρO) →

[λO, τO]〉. SetαO = α and ρO, τO ∈ R
+, λO ∈ R

− arbitrarily with ρO ≥ αO. Set
ΥO = max{U,W} andmO = m + 1. The functionPO : S̄mO

(0,ΥO)
× S̄(0,ρO) → [λO, τO]

is constructed as follows.
Forχ′ ∈ S̄mO

(0,ΥO)
andx0

′ ∈ S̄(0,ρO), setPO(χ
′,x0

′) = τO andPO(χ
′,φ) = τO if and

only if there existsχ ∈ Fm andt ∈ R so thatΞtT (χ) = 〈t〉 andχ′ = Ξ(0,ΥO)(σt(TJ(χ) ⊔
χ)) andx0

′ = Ξ(0,ρO)(σt(T (χ))). Everywhere else, the value of this function is set to zero.
Next, we show it obeys all of the axioms of the single neuron.
We prove thatO satisfies Axiom (1) by showing that its contrapositive is true. Letχ′ ∈

S̄mO

(0,ΥO)
andx0

′ ∈ S̄(0,ρO) be arbitrary so thatPO(χ
′,x0

′) = τO. If x0
′ = φ, Axiom (1) is

immediately satisfied. Thus, consider the case whenx0
′ = 〈x1

′

0 , x2
′

0 , . . . xk
′

0 〉. Thenx1
′

0 ≥ α,
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otherwise, from the construction ofPO(·), it is immediate that there exists aχ ∈ Fm with
T (χ) /∈ S.

Next, we prove thatO satisfies Axiom (2). Letχ′ ∈ S̄mO

(0,ΥO)
andx0

′ ∈ S̄(0,ρO) be arbi-

trary. If PO(χ
′,x0

′) = τO, then it is immediate from the construction thatPO(χ
′,φ) = τO.

On the contrary, ifPO(χ
′,x0

′) 6= τO, from the construction ofO, we havePO(χ
′,x0

′) = 0.
Then the “tie-breaker” condition in the hypothesis impliesthatPO(χ

′,φ) 6= τO. Therefore,
PO(χ

′,φ) = 0. Thus, Axiom (2) is satisfied either way.
With Axiom (3), we wish to showPO(φ

m+1,φ) = 0. Here, we will show thatPO(xJ ⊔
φm,x0

′) = 0, for all xJ ∈ S̄(0,ΥO) andx0
′ ∈ S̄(0,ρO) which implies the required result.

Assume, for the sake of contradiction, that there exists axJ ∈ S̄(0,ΥO) andx0
′ ∈ S̄(0,ρO),

so thatPO(xJ ⊔ φm,x0
′) = τO. From the construction ofO, this implies that there exists

χ ∈ Fm and t ∈ R so thatΞtT (χ) = 〈t〉 andΞ(0,ΥO)(σt(χ)) = φm. That is,χ has a
gap in the interval(t, t+W ), sinceΥO ≥ W . SinceT : Fm → S is causal, time-invariant
andW -resettable, by Corollary 3 (stated and proved later in the present write-up), we have
ΞtT (χ) = φ , which is a contradiction. Therefore, we havePO(xJ ⊔ φm,x0

′) 6= τO and
by construction ofO, PO(xJ ⊔ φm,x0

′) = 0, for all xJ ∈ S̄[0,ΥO] andx0
′ ∈ S̄[0,ρO]. This

impliesPO(φ
m+1,φ) = 0, satisfying Axiom (3).

Finally, we wish to show that for everyχ ∈ Fm, T (χ) is consistent withTJ(χ) ⊔ χ

with respect toO. That is, we wish to show that for everyχ ∈ Fm and for everyt ∈ R,
Ξ0σt(T (χ)) = 〈0〉 if and only if PO(Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)), Ξ(0,ρO)(σt(T (χ)))) = τO.
Consider arbitraryχ ∈ Fm andt ∈ R. If Ξ0σt(T (χ)) = 〈0〉, then it is immediate from the
construction ofO thatPO(Ξ(0,ΥO)(σt(TJ(χ)⊔χ)), Ξ(0,ρO)(σt(T (χ)))) = τO. To prove the
converse, supposeΞ0σt(T (χ)) 6= 〈0〉. Then, from the contrapositive of the “tie-breaker”
condition, it follows that for all̃χ ∈ Fm and for allt̃ ∈ R with Ξ(0,ΥO)(σt̃(TJ(χ̃) ⊔ χ̃)) =
Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)), we haveΞ0σt̃(T (χ̃)) = Ξ0σt(T (χ)) 6= 〈0〉. Therefore, from the
construction, we havePO(Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)), Ξ(0,ρO)(σt(T (χ)))) 6= τO.

Proof of Proposition 3.Assume that the hypothesis in the proposition is true. LetT : Fm →
S beW ′-Resettable for someW ′ ∈ R

+. SetW = max{W ′, 12α}. One readily verifies that
T : Fm → S is alsoW -resettable.

We first show a construction for the neuronJ, prove that it obeys all the axioms and
then show that it has the property that there exists aU ∈ R

+ so that for allt1, t2 ∈ R and
χ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we haveΞ(0,U)(σt1(TI(χ1)⊔χ1)) 6=
Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)), whereTJ : Fm → S is such that for eachχ ∈ Fm, TJ(χ) is
consistent withχ with respect toJ.

We first construct the neuronJ〈αJ, ΥJ, ρJ, τJ, λJ,mJ, PJ : S̄
mJ

(0,ΥJ)
× S̄(0,ρJ) → [λJ, τJ]〉.

SetαJ = α. Let p, q, r ∈ R
+, with3 p = 8α, q = 2α andr = α. SetΥJ = p+ q + r +W ,

ρJ = 2p − r andmJ = m. Let τJ ∈ R
+, λJ ∈ R

− be chosen arbitrarily. The function
PJ : S̄

mJ

(0,ΥJ)
× S̄(0,ρJ) → [λJ, τJ] is constructed as follows.

Forχ ∈ S̄mJ

(0,ΥJ)
andx0 ∈ S̄(0,ρJ), setPJ(χ,x0) = τJ andPJ(χ,φ) = τJ if and only if

one of the following is true; everywhere else, the function is set to zero.

1. Ξ(p,p+W )χ = φmJ , Ξpχ 6= φmJ andΞ(0,p]x0 = φ.
2. Ξ(0,p+q]x0 = 〈t〉, whereq ≤ t < (q + r) and(t − q) = ε(0, Ξ(0,p]σt(χ)). Moreover,

Ξ(t+p,t+p+W )χ = φmJ andΞ(p+t)χ 6= φmJ .

3 The choice of values forp, q, r andW was made so as to satisfy the following inequalities, which we
will need in the proof:p < W, p > 2(q + r) andq > α.
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3. Ξ(0,2p−(q+r)]x0 = 〈tx, ty〉 with (p − (q + r)) < tx ≤ (p − q) ≤ ty = p. Also, for all
t′ ∈ [0, p], Ξ(t′,t′+W )χ 6= φmJ .

4. Ξ[0,2p−r]x0 = 〈t, tx, ty〉 with q ≤ t < (q + r) < (p − r) ≤ tx ≤ p ≤ ty = p+ t and
(t−q) = ε((ty−tx−q), Ξ(0,p]σt(χ)). Furthermore, for allt′ ∈ [0, p+t],Ξ(t′,t′+W ]χ 6=
φmJ .

whereε : [0, r)× S̄mJ

(0,p]
→ [0, r) is as defined below.

For convenience, we define an operatorιkj : [0, 1) → [0, 1), for j, k ∈ Z
+, that con-

structs a new number obtained by concatenating everyith digit of a given number, where
i ≡ j mod k. More formally, forx ∈ [0, 1), ιkj (x) = Σ∞

i=1((⌊x × 10j+(i−1)k⌋ − 10⌊x ×

10j+(i−1)k−1⌋)× 10−i).
Also, we define another operatorζk : [0, 1)k → [0, 1), for k ∈ Z

+ which “inter-
leaves” the digits ofk given numbers in order to produce a new number. More formally,
for x0, x1, . . . , xk−1 ∈ [0, 1), ζk(x0, x1, . . . , xk−1) = Σ∞

i=0((⌊xk( i

k
−⌊ i

k
⌋) × 101+⌊ i

k
⌋⌋ −

10⌊xk( i

k
−⌊ i

k
⌋) × 10⌊

i

k
⌋⌋)× 10−(i+1)).

Let d be the largest integer so that, for allx′ ∈ [0, r), we havex′ × 10d < 1.
For x′ ∈ [0, r), let x = x′ × 10d. For χ ∈ S̄mJ

(0,p]
, define4 ε(x′, χ) = 10−d ×

ζmJ
(ε0(ι

mJ

1 (x), Π1(χ)), ε0(ι
mJ

2 (x), Π2(χ)), . . . , ε0(ι
mJ
mJ

(x), ΠmJ
(χ))), whereε0 : [0, 1)×

S̄(0,p] → [0, 1) is as defined below.
Let n ∈ [0, 1) andx ∈ S̄(0,p]. Furthermore, letc = ι21(n) ands = ι22(n). Let x =

〈x1, x2, . . . , xk〉. We have0 ≤ k ≤ 8, becausep = 8α. Also, sincep = 8r, we have
xi×10d−1 < 1, for 1 ≤ i ≤ k. Lets′ = ζk+1(x

1×10d−1, x2×10d−1, . . . , xk×10d−1, s).
If c = 0, then letc′ = k

10 +0.09 else letc′ = k
10 +

c
10 . Finally, defineε0(n,x) = ζ2(c

′, s′).
Next, we show thatJ satisfies all the axioms of the neuron.
It is immediate thatJ satisfies Axiom (1), since all output spikes in the above construc-

tion are at leastq milliseconds apart, andq = 2α.
We now prove thatJ satisfies Axiom (2). Letχ′ ∈ S̄mJ

(0,ΥJ)
andx0

′ ∈ S̄(0,ρJ) be arbitrary.

If PJ(χ
′,x0

′) = τJ, then it is immediate from the construction thatPJ(χ
′,φ) = τJ which

satisfies Axiom (2). On the contrary, ifPJ(χ
′,x0

′) 6= τJ, from the construction ofJ, we have
PJ(χ

′,x0
′) = 0. Also, from the construction we have eitherPJ(χ

′,φ) = 0 or PJ(χ
′,φ) =

τJ. Axiom (2) is satisfied in either case.
Also, J satisfies Axiom (3), since it is clear thatχ = φmJ does not satisfy any of the

conditions enumerated above. We therefore havePJ(φ
mJ ,φ) = 0.

Finally, we show that there exists aU ∈ R
+ so that for all t1, t2 ∈ R and

χ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we haveΞ(0,U)(σt1(TJ(χ1) ⊔
χ1)) 6= Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)), where TJ : Fm → S such that for eachχ ∈
Fm, TJ(χ) is consistent withχ with respect toJ. Let U = p + q + r + W . As-
sumeΞ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)). Now, supposeΞ(0,0+W )σt1(χ1) = φm, then
clearly Ξ(0,0+W )σt2(χ2) 6= φm, otherwiseT (·) produces no spike at timest1 and
t2 respectively on receivingχ1 and χ2, by Corollary 3. As a result,Ξ(0,U)σt1(χ1) 6=
Ξ(0,U)σt2(χ2), which implies the required result. Otherwise, from Proposition 5, it fol-
lows that there existV1, V2 ∈ R

+ so thatΞ(0,V1](σt1(χ1)) 6= Ξ(0,V2](σt2(χ2)). If
Ξ(0,U)(σt1(χ1)) 6= Ξ(0,U)(σt2(χ2)), it is immediate thatΞ(0,U)(σt1(TI(χ1) ⊔ χ1)) 6=
Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)). It therefore suffices to prove that ifΞ[U,V1](σt1(χ1)) 6=
Ξ[U,V2](σt2(χ2)) thenΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)). Proposition 5 implies that

4 Recall that theprojection operator for spike-train ensemblesis defined asΠi(χ) = xi, for 1 ≤ i ≤ m,
whereχ = 〈x1,x2, . . . ,xm〉.
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Ξ(V1,V1+W )(σt1(χ1)) = φm andΞV1
(σt1(χ1)) 6= φm. Therefore, by Case (1) of the con-

struction,Ξ(V1−p)σt1TJ(χ1) = 〈V1 − p〉. Moreover, since Proposition 5 implies that for
all t′1 ∈ [0, V1), Ξ(t′1,t

′
1+W )(σt1(χ1)) 6= φm, from Case (3) of the construction, we have

that for everyk ∈ Z
+ with V1 − kp > 0, Ξ(V1−kp)σt1TJ(χ1) = 〈V1 − kp〉. Let k1 be5

the smallest positive integer, so thatV1 − k1p < U . From the previous arguments, we have
Ξ(V1−k1p)σt1TJ(χ1) = 〈V1 − k1p〉. Also, it is easy to see thatV1 − k1p ≥ (q + r). Let
k2 be similarly defined with respect toχ2 so thatΞ(V2−k2p)σt2TJ(χ2) = 〈V2 − k2p〉 and
V2 − k2p < U . Now, there are two cases:

1. If V1 − k1p 6= V2 − k2p, we now show thatΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)),
which is the required result. Assume, without loss of generality, that V1 − k1p < V2 −
k2p. If these two quantities are less thanp − r apart, we haveΞ(0,U)(σt1TJ(χ1)) 6=
Ξ(0,U)(σt2TJ(χ2)), because by Case (4) of the constructionTJ(χ1) has a spike in the
interval(V1 − k1p− (q+ r), V1 − k1p− q] and by Case (3) of the construction,TJ(χ2)
has no spike in the interval(V2−k2p, V2−k2p+p− (q+ r)). In other words, the spike
following the one atV1−k1p in TJ(χ1) has no counterpart inTJ(χ2). On the other hand,
if they are less thanp apart but at mostp − r apart, by similar arguments, it is easy to
show that the spike atV2 − k2p in TJ(χ2) has no counterpart inTJ(χ1). Finally, if they
are at leastp apart, thenk2 does not satisfy the property that it is the smallest positive
integer, so thatV2 − k2p ≤ U , which is a contradiction.

2. On the contrary, consider the case whenV1 − k1p = V2 − k2p. We have two cases:
(a) Supposek1 6= k2. Let t′1 be the largest positive integer so thatΞt′1

σt1TJ(χ1) = 〈t′1〉

and t′1 < V1 − k1p. From Case (4) of the construction, we have thatq ≤ (V1 −
k1p) − t′1 ≤ q + r. Let t′2 be defined likewise, with respect toχ2. Further, let
n′
1 = (V1 − k1p) − t′1 − q andn′

2 = (V2 − k2p) − t′2 − q andn1 = n′
1 × 10d

andn2 = n′
2 × 10d. Sincek1 6= k2, it is straightforward to verify that for allj

with 1 ≤ j ≤ mJ, ι
2
1(ι

mJ

j (n1)) 6= ι21(ι
mJ

j (n2)), for the former number has9 in the

(k1 + 1)th decimal place, while the latter number does in the(k2 + 1)th decimal
place and not in the(k1 + 1)th decimal place sincek1 6= k2. Therefore,n1 6= n2

and consequentlyt′1 6= t′2 which gives usΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)),
which is the required result.

(b) On the other hand, supposek1 = k2. Again, we have two cases:
i. Suppose, there exists aj with 1 ≤ j ≤ mJ and a k′ ≤ k1, so that

Ξ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) has a different number of spikes when com-
pared toΞ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)). Letn1, n2 be defined as before. It
is straightforward to verify thatι21(ι

mJ

j (n1)) 6= ι21(ι
mJ

j (n2)), because they dif-

fer in the(k1 − k′ + 1)th decimal place6 . Therefore,Ξ(0,U)(σt1TJ(χ1)) 6=
Ξ(0,U)(σt2TJ(χ2)).

ii. Now consider the case where for allj with 1 ≤ j ≤ mJ and k′ ≤
k1, we haveΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) have the same number of
spikes when compared toΞ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)). Now, by hy-
pothesis, we haveΞ[U,V1](σt1(χ1)) 6= Ξ[U,V2](σt2(χ2)). Therefore there
must exist a1 ≤ j ≤ mJ and k′ ≤ k1, so that there is a point in
time where one of the spike-trainsΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) and
Ξ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)) has a spike, while the other does not. Lett′

5 k1 exists becauseU > p.
6 Which inn1 andn2 encodes the number of spikes in the interval(V2 − k′p, V2 − (k′ − 1)p] on the

jth spike-train ofχ1 andχ2 respectively.
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be the latest time instant at which this is so. Also, assume without loss of gener-
ality thatΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) = 〈x1, . . . , xq〉 has a spike at time
instantt′ whileΞ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)) does not. Letp be the num-
ber so thatt′ = xp. Let n1, n2 be defined as before. Also, for eachh with 1 ≤
h ≤ k1, let rh be the number of spikes inΞ(V1−hp,V1−(h−1)p]Πj(σt1(χ1)).
Eachrh can be determined fromn1. Then, it is straightforward to verify7 that
ι
r
k′

p ι
r
k′−1

r
k′−1

. . . ιr1r1 ι
2
2ι

mJ

j n1 6= ι
r
k′

p ι
r
k′−1

r
k′−1

. . . ιr1r1 ι
2
2ι

mJ

j n2. Therefore,n1 6= n2 and
it follows that
Ξ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)).

Some auxiliary propositions used in the proofs of Propositions 2 and 3

Proposition 4. If T : Fm → S is time-invariant, thenT (φm) = φ.

Proof. For the sake of contradiction, supposeT (φm) = x0, wherex0 6= φ. That is, there
exists at ∈ R with Ξtx0 = 〈t〉. Let δ < α. Clearly,σδ(φ

m) = φm ∈ Fm. SinceT :
Fm → S is time-invariant,T (σδ(φ

m)) = σδ(T (φm)) = σδ(x0). Now, σδ(x0) 6= x0

sinceΞ(t−δ)σδ(x0) = 〈t − δ〉 whereasΞ(t−δ)x0 = φ, for otherwisex0 /∈ S. This is a
contradiction. Therefore,T (φm) = φ.

Corollary 3. Let T : Fm → S be causal, time-invariant andW -resettable, for some
W ∈ R

+. If χ ∈ Fm has a gap in the interval(t, t+W ), thenΞtT (χ) = φ.

Proof. Assume the hypothesis of the above statement. One readily sees thatΞtT (χ) =
Ξ[t,∞)Ξ(−∞,t]T (χ). Now, sinceχ has a gap in the interval(t, t + W ) andT : Fm → S
is W -resettable, we haveΞ[t,∞)Ξ(−∞,t]T (χ) = Ξ[t,∞)T (Ξ(−∞,t]χ). Further, by defini-
tion, Ξ(t,∞)Ξ(−∞,t]χ = Ξ(t,∞)φ

m. Therefore, sinceT : Fm → S is causal, it follows
thatΞ[t,∞)T (Ξ(−∞,t]χ) = Ξ[t,∞)T (φm) = φ, with the last equality following from the
previous proposition. Thus, we haveΞtT (χ) = φ.

Proposition 5. Let T : Fm → S be causal, time-invariant andW ′-resettable, for some
W ′ ∈ R

+. Then for allW ∈ R
+ with W ≥ W ′, t1, t2 ∈ R and χ1, χ2 ∈ Fm with

Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), whereΞ(0,0+W )σt1(χ1) 6= φm 6= Ξ(0,0+W )σt2(χ2),
there existV1, V2 ∈ R

+ so that the following are true.

1. Ξ(0,V1](σt1(χ1)) 6= Ξ(0,V2](σt2(χ2))
2. Ξ(V1,V1+W )(σt1(χ1)) = φm, ΞV1

(σt1(χ1)) 6= φm andΞ(V2,V2+W )(σt2(χ2)) = φm,
ΞV2

(σt2(χ2)) 6= φm

3. For all t′1 ∈ [0, V1), Ξ(t′1,t
′
1+W )(σt1(χ1)) 6= φm and for all t′2 ∈ [0, V2),

Ξ(t′2,t
′
2+W )(σt2(χ2)) 6= φm.

Proof. SinceT : Fm → S is causal, we haveΞ[t1,∞)T (χ1) = Ξ[t1,∞)T (Ξ(t1,∞)χ1).
This impliesσt1(Ξ[t1,∞)T (χ1)) = σt1(Ξ[t1,∞)T (Ξ(t1,∞)χ1)) which gives us
Ξ[0,∞)σt1(T (χ1)) = Ξ[0,∞)σt1(T (Ξ(t1,∞)χ1)). SinceT : Fm → S is
time-invariant andσt1(Ξ(t1,∞)χ1) = Ξ(0,∞)σt1(χ1) ∈ Fm, we have

7 The expression on either side of the inequality is a real number that encodes for thepth spike time in the
spike-trainsΞ(V1−k′p,V1−(k′

−1)p]Πj(σt1 (χ1)) andΞ(V2−k′p,V2−(k′
−1)p]Πj(σt2 (χ2)) respectively.
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Ξ[0,∞)σt1(T (Ξ(t1,∞)χ1)) = Ξ[0,∞)T (Ξ(0,∞)σt1(χ1)). In short,
Ξ[0,∞)σt1(T (χ1)) = Ξ[0,∞)T (Ξ(0,∞)σt1(χ1)) which implies
Ξ0σt1(T (χ1)) = Ξ0T (Ξ(0,∞)σt1(χ1)). Similarly, Ξ0σt2(T (χ2)) =
Ξ0T (Ξ(0,∞)σt2(χ2)). Therefore, it follows from the hypothesis that
Ξ0T (Ξ(0,∞)(σt1(χ1))) 6= Ξ0T (Ξ(0,∞)(σt2(χ2))).

Let V1, V2 ∈ R
+ be the smallest positive real numbers so thatΞ(0,∞)(σt1(χ1))

and Ξ(0,∞)(σt2(χ2)) have gaps in the intervals(V1, V1 + W ) and (V2, V2 + W )
respectively. That suchV1, V2 exist follows from the fact thatχ1, χ2 ∈ Fm. Since,
T : Fm → S is W ′-resettable, it is alsoW -resettable forW ≥ W ′. It therefore
follows that Ξ(−∞,V1]T (Ξ(0,∞)(σt1(χ1))) = T (Ξ(−∞,V1]Ξ(0,∞)(σt1(χ1))) which
equals T (Ξ(0,V1](σt1(χ1))). This implies that Ξ0Ξ(−∞,V1]T (Ξ(0,∞)(σt1(χ1))) =
Ξ0T (Ξ(0,V1](σt1(χ1))) due to which we have Ξ0T (Ξ(0,∞)(σt1(χ1))) =
Ξ0T (Ξ(0,V1](σt1(χ1))). Likewise,
Ξ0T (Ξ(0,∞)(σt2(χ2))) = Ξ0T (Ξ(0,V2](σt2(χ2))). We therefore have
Ξ0T (Ξ(0,V1](σt1(χ1))) 6= Ξ0T (Ξ(0,V2](σt2(χ2))). This readily implies
Ξ(0,V1](σt1(χ1)) 6= Ξ(0,V2](σt2(χ2)) and, from the construction, it follows that
Ξ(V1,V1+W )(σt1(χ1)) = φm, ΞV1

(σt1(χ1)) 6= φm andΞ(V2,V2+W )(σt2(χ2)) = φm,
ΞV2

(σt2(χ2)) 6= φm, for otherwiseV1 or V2 would not be the smallest choice of
numbers with the said property. Furthermore, for the same reasons, for allt′1 ∈ [0, V1),
Ξ(t′1,t

′
1+W )(σt1(χ1)) 6= φm and for allt′2 ∈ [0, V2), Ξ(t′2,t

′
2+W )(σt2(χ2)) 6= φm.
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