Noname manuscript No.
(will be inserted by the editor)

Supplementary Material to the manuscript “Connectomic
Constraints on Computation in
Feedforward Networks of Spiking Neurons”

Venkatakrishnan Ramaswamy - Arunava Banerjee

Online Resource A: Relationship of the abstract neuron modeto some widely-used
neuron models

Here, we demonstrate that the properties that our abstr@d¢inof the neuron is contingent
on are satisfied, up to arbitrary accuracy, by several wided neuron models such as the
Leaky Integrate-and-Fire Model and Spike Response Model.

Leaky Integrate-and-Fire Model

Consider the standard form of the Leaky Integrate-and{Awdel:

du
dt

wherer,, = RC. Whenu(t/)) = v, the neuron fires a spike and the reset is given by
u(tY) + A) = u,, wherev is the threshold and\ is the absolute refractory period. Suppose
an output spike has occurred at tifne A, the above differential equation has the following
solution:

= —u(t) + RI(t) (1)

Tm

t—1t

Tm

t—t
u(t) = ur exp(— )+ 1 / exp(fi)f(t — s)ds 2
C 0 T™m
Supposd (t) = Xjw; Zio(t — t](,”) anda(-) had a finite support. Then, it is clear from
the above expression that the contribution of the previaupus spike fired by the present
neuron as well as the contribution of input spikes from pnagfic neurons decays exponen-
tially with time. Therefore, one can compute the membrarterg@l to arbitrary accuracy
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by choosing input and output “windows” of appropriate sipdtgatu(-) is a function only
of input spikes and output spikes in those windows. It is @asgrify that the all the axioms
of our model are satisfied: Clearly, the model above has asl@bgefractory period, a past
output spike has an inhibitory effect on membrane poterdiafl upon receiving no input
and output spikes in the said windows, it settles to resttgntial. Thus, an instantiation
of our abstract model can simulate a Leaky Integrate-anelfodel to arbitrary accuracy.

Spike Response Model

Consider now the standard form of the Spike Response Modes{@er and Kistler, 2002).
In the absence of spikes, the membrane poteafialis set to the value, = 0. Other-
wise, the membrane potential is given by

u(t) :n(t—fi) +Ej wj ) Gij(t—fi,t—tgi)) (3)

wheren(-) describes the after-hyperpolarization after an outpltesaif; ande;; () de-
scribes the response to incoming spi%éé which are the spikes fired by presynaptic neuron
Jj with w; being synaptic weightsy(-), is set to a sufficiently low value faa milliseconds
after an output spike so as not to cause another spike, whésethe absolute refractory
period. The functiong(-) ande;;(-) typically decay exponentially with time and therefore,
as before, one can compute the membrane potential to aytetrauracy by choosing input
and output “windows” of appropriate size so that tHe) is a function only of input spikes
and output spikes in those windows. Likewise, it is easy tifywéhat the all the axioms of
our model are satisfied: Clearly, the model above has anwbs@fractory period, a past
output spike has an inhibitory effect on membrane poterdiafl upon receiving no input
and output spikes in the said windows, it settles to restwtgmtial. Thus, it is straightfor-
ward to verify that an instantiation of our abstract modei sanulate a Spike Response
Model to arbitrary accuracy.
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Online Resource B: Proofs and Technical Remarks
Technical Remarks from Section 4

It might be argued that the input spike-train to a neuron oaipossibly be infinitely long,
since every neuron begins existence at a certain point i. tilowever, this begs the ques-
tion whether the neuron was at the resting potential whefirtanput spikes arriveld An
assumption to this effect would be significant, particylédrthe current membrane potential
depended on it. It is easy to construct an example alongrtles bf the example described
in Figure 1, where the current membrane potential is diffedepending on whether this as-
sumption is made or not. Assuming infinitely long input spikan ensembles, on the other
hand, obviates the need to make any such assumption. We tleiviewpoint for the rest
of the paper with the understanding that the alternativep@ent discussed at the beginning
of this paragraph can also be expounded along similar lines.

Proofs from Section 5

Proof of Gap LemmasSince, in eachko consistent withy, with respect ta\, the interval
(t+ 2p,t + 3p) of xo and the(t + T + p,t + T + 2p) of x are arbitrary, the sequence of
spikes present in the intervél + p,t + 2p) of xo could be arbitrary. Howeveg™* and x
are identical in(¢,t + p + 7). Thus, it follows from Axiom 2 in the formal definition of
a neuron that for everyf € (t,t + p), P(Z0,r)(0¢ (X)), Z(0,p) (o (x0))) is at most the
value of P(Zo.r) (o4 (x™)): E(0,p) (0 (x5))) , becauseS g (o1 (x5)) IS ¢, i.e. empty.
SinceP(Z(o,1(ov (")), Z(0,p) (01 (x5))) is less tharr for everyt’ € (t,t + p),
P(Z0,7y(0¢ (X)), Z(0,p) (01 (x0))) is less tharr in the same interval, as well. Therefore,
xp has no spikes ifft, t + p).

That 2p is the smallest possible gap lengthstj for this to hold, follows from the
counterexample in Figure 1, where the present conclusi@mali hold, whenxg had gaps
of length2p — 4, for arbitrarily smalls > 0.

O

Proof of Corollary 1. (1) is immediate from the Gap Lemma, when weget x*.

For (2), the proof is by strong induction on the number of spikincet. Let xo be
an arbitrary spike-train that is consistent witti, with respect toN. Notice that from
(1) we have thaig is identical toxo™* in (¢,t + p). The base case is to show that both
xo* andxo have their first spike sinceat the same time. Assume, without loss of gen-
erality, that the first spike oky att; < ¢, is no later than the first spike ofy*. We
have P (20,1 (06, (X))s 20, (91, (x5))) = P(Z(01) (00, (X)), Z(0,p) (0, (x0))) since
Z0,0) (01, (%5)) = Z(0,p) (0, (x0)) = ¢. Thereforex; also has its first spike sineeatt;.
Let the induction hypothesis be that botf) andxo have their first: spikes since at the
same times. We show that this implies that thet 1)*" spike in each spike-train is also at
the same time instant. Assume, without loss of generaliay, the(k + 1)!" spike since of
xo attyy1, is No later than thék + 1)*" spike sincet of xo*. Now, Z0,p) 0ty (x5)) is
identical to= g ) (ot,,,, (x0)) from the induction hypothesis sin¢e+p) —t;.1 > p. Thus,
P(Z(0,0) (0110 (X)) Z(0,0) (01012 (%5)) = P(E(0,1) (01101 (X))s Z(0,0 (0112 (%0)))
and thereforex}, also has itk 4 1)" spike att;_, ;. This completes the proof of (2).

1 Note that our axiomatic definition of a neuron does not addtéssjuestion.
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(3) follows from the Gap Lemma and (2).

Proposition 1. Letx be a spike-train ensemble that satisfies a T-Gap criteriom foeuron
N{a, Y, p, 7, A\,m, P : S(’gj) x 8(0,p) = [X,7]), whereT € RT. Then, there is exactly one
spike-trainxg, such thatxg is consistent with, with respect to\.

Proof of Proposition 1.Sincey satisfies &-Gap criterion, there exists a spike-trainwith

at least one gap of lengttp in every interval of time of lengti” — " + 2p, so thatxg is
consistent withy with respect ta\. For the sake of contradiction, assume that there exists
another spike-traig’, not identical toxg, which is consistent with,, with respect ta\.
Lett’ be the time at which one spike-train has a spike but anotresmib Lett > ¢’ be such
thatxo has a gap in the intervét, ¢t + 2p). By Corollary 1 to the Gap Lemma, it follows
thatx,’ is identical toxq after time instant 4 p. This contradicts the hypothesis that is
different fromxg at t'.

O

Lemma 2. Consider a feedforward network. Let x satisfy aT-Gap criterion for A/,
whereT € R*. Then the output neuron ¢f produces a unique output spike-train whih
receivesy as input. Furthermore, the membrane potential of the outygwtron at any time
instant depends on at most the p@smilliseconds of input ir.

Proof of Lemma 2We prove that the output of the network is unique by strongi@tidn
on depth. LetV;, for 1 < < d, be the set of neurons " of depthi. Each neurom € N;
receives all inputs from spike-trains jn Since,N satisfies a Gap criterion with those input
spike-trains, its output is unique. The induction hypoihésen is that for ali < k < d,
each neurom € N; produces a unique output spike-train wh¥ris driven byy. Consider
arbitraryN’ € Ny ;. Itis clear that all inputs tdl’ are from spike-trains frony or neurons
in Ule N;, for otherwise the depth ¢i’ would be greater thak + 1. Since, all its inputs
are unique by the induction hypothesis and they satisfy ad@gion forN’, its output is
also unique.

Next, we show that the membrane potential of the output meatcany time instant
depends on at most the pastmilliseconds of input iny. Since the output neuron satis-
fies a(%)-Gap Criterion, its membrane potential at any point depemdat most the past
(%) milliseconds of the inputs it receives (some of which may bguot spike-trains of
other neurons). Consider one such “penultimate layer’ereukgain, its output membrane
potential at any time instant, likewise, depends on its s the pas(%) milliseconds.
Therefore, the current potential of the output neuron isedépnt on the input received by
the penultimate layer neuron in at most the ;13”%) milliseconds. Similar arguments can
be put forth until, for each path, one reaches a neuron, alltafse inputs do not come
from other neurons. Since the longest such path is of ledgths straightforward to verify
that the membrane potential of the output neuron dependsronstT milliseconds of past
input in x.

O
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Fig. 1 lllustration showing that an input spike-train ensemblés$gng a Flush Criterion also satisfies a Gap
Criterion.

Proofs from Section 6

Lemma 3. An input spike-train ensemble for a neuronN({«, 7, p, 7, A\, m, P : S(&T) X
S(0,p) — [\ 7)) that satisfies ar-Flush Criterion also satisfies &' + 27 + 2p)-Gap
Criterion for that neuron.

Proof of Lemma 3 Figure 1 accompanies this proof. The neuron on being driyep ¢an-
not have output spikes outside the intergall, T'). This easily follows from Axiom 2 and
3 of the neuron because the neuron does not have input sgka® bime instant” and in
the interval(—7,0) and onwards. Now, to see thatsatisfies g7 + 21" + 2p)-Gap Crite-
rion, recall that with a’-Gap Criterion, distance between any two gaps of lefgthn the
output spike-train is at mogt' — T — 2. With y, we observe that the distance between any
two 2p gaps on the output spike-train is at m@st- 7. Thus, 7’ — Y — 2p = T + T, which
gives usl” = T + 27 + 2p. The result follows.

O

Lemma 4. An input spike-train ensembje for a feedforward network that satisfiesra

Flush Criterion also satisfies &T" + d(d + 1)Y + 2dp)-Gap Criterion for that network,
where?’, p are upper bounds on the same parameters taken over all themein the
network and{ is the depth of the network.

Proof of Lemma 4 Following the proof of the previous lemma, we know that nesrthat
receive all their inputs frony have no output spikes outside the interfall’, T'). Similarly,
neurons that have depth 2 with respect to the input verti€dseonetwork have no output
spikes outsidé—27, T'). Likewise, the output neuron, which has degthhas no output
spikes outsidé—dY, T). It follows that the output neuron obey$B+ (d+1)Y +2p)-Gap
Criterion. Also, every other neuron obeys this criteriordagse the distance between the
2p output gaps for every neuron is at most that of the outputorewince their depth is
bounded from above by the depth of the output neuron. Thoisy fhe definition of the Gap
criterion for feedforward networks, we have thasatisfies dT + d(d + 1)1 + 2dp)-Gap
Criterion for the current network.

O
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Proofs from Section 7

Proof of Lemma 5We prove the easy direction first. BN’ ¢ X5 such thatyA ¢
21, TN 7 7 TN |7 » then it follows thatTy |g,, # Tarle,, bECAUSEF, C Gor.

For the other direction, 168NV’ € X5 such thaV A € 51, Tarlg,, # Tarle,,- We con-
struct 7' C Fim, SO thatTa |- # Tar|=. This immediately implieSy: |z, # Talz,-
Consider arbitrary\/ € %;. From the hypothesis, we ha@®|s,, # Talg,,- Therefore
Jx € Gz suchthaty|¢,, (x) # Tarlar, (x). Additionally, there existy, 7o € R, so that
x satisfies a7 -Gap Criterion forV' and aT»-Gap Criterion fortV”. Let T = max (Ty, Tz).
Let Talo,, (x) = x0” andTiv|e,, (x) = xo . LetF = U, cr Z(0,27) (0¢(x)). Note that each
element ofF satisfies 7-Flush Criterion. The claim, then, is that | » # Txr| . We have
S0, (Ta (E0,21(@1(0))) = Zom)(0¢(x0’)) and Z(o.1 (T (S (0,27 (0(x)))) =
Z(0,1)(0t(x0))- This follows from the fact thak satisfies ther’-Gap Criterion with both
N andN’ and therefore when and A\ are driven by any segment gfof length27, the
output produced in the lattg milliseconds of that interval agrees wika andxo’ respec-
tively. Therefore, ifxo # xo', it is clear that there existstaso thatTy (S 211 (0 (x))) #
Tn (Zp0,21(0¢(x))). F' is obtained by taking the union of sughfor every N € ;. The
result follows.

O

Technical Remarks from Section 8

Some technical remarks concerning the mechanics of pradntplexity results are stated
below.

For two sets of feedforward networks; and X with X3 C Y, in order to prove that
X5 is more complex thartt’y, it is sufficient to show a transformation : F,, — S that
no network present itv; can perform, while demonstrating a network’ip that can effect
it. This involves constructing such a transformation, peescribing an output spike train
for every element itFF,,. Recall thatF,, consists of spike-train ensembles of orderwith
the property that for each such ensemble there exists aveostal numbefr’, so that the
ensemble satisfies’&Flush criterion. In practice, however, it usually suffitegprescribe
output spike trains for a small sub$ef elements ofF,,,, and prove that no network iff;
can map the input spike trains in that subset to their priesdroutputs. The second step
would involve demonstrating a network iy, that maps this subset @%,, to the prescribed
output, while mapping the rest ¥, to arbitrary output spike trains. Strictly speaking then,
the transformatioy” : F,,, — S we prescribe comprises the mapping fraf, to output
spike trains, as effected lkis network inX5. For convenience however, we shall refer to
the mapping prescribed for some small subsefgfas the prescribed transformation.

The next remark concerns timescales of the paramétensd p» of each neuron in the
network and the timescale at which the transformation dper&ecall that the parameters
Y andp correspond to the timescale at which the neuron integragmss it receives and
the relative refractory period respectively. It would bagenable to expect that the values
of these parameters lie within a certain range as consttdigephysiology, although this
range might be different for different local neuronal netiegoin the brain. Suppose we have
an upper bound on the value of each such parameter. Then, wdh@nove a complexity

2 albeit typically one that contains, for each positive reainerT", at least one spike-train ensemble
satisfying &I'-Flush Criterion.
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result, there would exist a timescdle which is a function of these upper bounds, such that
there exists a transformation on this timescale that cabaqgterformed by any network
with the said architecture, whose parameters are govemdhldse upper bounds. More
precisely, there would exist a transformation that mapg afseputs satisfying &-Flush
criterion to an output spike train that (provably) cannopleeformed by any network with
the architecture in question. When stating and proving aptexity result, however, for the
sake of succinctness, we do not explicitly state the reidbietween these bounds and the
corresponding’. We simply letY", p andT remain unbounded. It is straightforward for the
reader to derive a bound dnas a function of bounds dh andp, as discussed.

The final remark is about our neuron model and the issue of whatan assume about
the neurons when demonstrating that a certain netwarkeffect a given transformation.
Recall that our neuron model assumes that our neuronsysasisiall number of elementary
properties but are otherwise unconstrained. This allowedwdel to accomodate a large
variety of neuronal responses. This was convenient whesdfagth the task of showing
that no network of a certain architecture could perform agitransformation, no matter
what response properties its neurons have. However, whemisteto show that a certain
transformation can be done by a specific network, some caigim order. In this case, it
is prudent to restrict ourselves to as simple a neuron madpossible, so that whether the
neuronal responses employed are achievable by a real lwaleguron, is not in question.
In practice, we describe the neurons in the constructiothatdhey can certainly be effected
by a highly-reduced neuron model such as the Spike RespoodelldRM, (Gerstner and
Kistler, 2002).

Proofs from Section 9

Proof of Lemma 6.Let A be a network that effects : 7, — S.

T(-) is causal.Consider arbitraryy1,x2 € Fm With Z; yx1 = Z(1,00)X2, fOr some
t € R. We wish to show thaE(; )7 (x1) = Z,00)7T (x2). Let Ny, for 1 < i < d, be the
set of neurons iV of depthi, whered is the depth of\. Each neuro € N; receives all its
inputs from spike-trains ity. When the network receiveg andyz as input, supposs re-
ceivesy; andys; respectively as input. Also, clearl; .)x1 = Z(1,00)X2- Letx1 andxsy’
be the output produced by on receivingy) andy) respectively. Sincg’, x5 € Fm, there
exists al' € RT, 50 that=(r ooy X1 = Z[7,00)X2 = #™ , wherem/ is the number of inputs
to N. Therefore, by Axiom (3) of the neuron, we ha¥g; .)x1" = Sjr o) x2’ = ¢. Now,
forall ¢’ € R, Et/Xj/ = <t/> if and only if PN(E(O,TN)(O-t/(X‘/j))aE(O,pN)(Ot/(Xj/)) = TN,
for j = 1,2. Itis immediate that fot’ > ¢, we have= (o 1, (v (x1)) = S(0, 1) (¢ (X2))-
Now, by an induction argument on the spike number sifici is straightforward to show
that for all ¢’ > ¢, E(O,pN)(Ut’ (xll)) = E(O,pN)(Ut’ (XQ/)). Thus, we haVéf[t’oo)xll =
E[t’oo)xQ’. Similarly, using a straightforward induction argumentdepth, one can show
that for every neuron in the network, its output until timetamtt is identical in either case.
We therefore hav& |, o) 7 (x1) = Z(t,00) T (X2)-

T(-) is time-invariant. Consider arbitraryy € F, and¢ € R with o¢(x) € Fm. We
wish to show that7 (a:(x)) = o+(T(x)). As before, let\;, for 1 < i < d, be the set of
neurons iV of depth:, whered is the depth of\/. Each neuroml € N; receives all its
inputs from spike-trains iry. When the network receiveg ando:(x) as input, suppose
N receivesy’ ando (') respectively as input. Let;” andxs’ be the output produced by
N on receivingy’ ando:(x’) as input respectively. We wish to show that = o+ (x1').
Sincex’ € Fm, there exists & € R, so thatS(7 o)X’ = Zr—t,00)0¢(X) = ™,
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wherem/’ is the number of inputs t&l. Therefore, by Axiom (3) of the neuron, we have
E[T,w)xll = E[T_t,oo)xQ’ = ¢. Now, for all ' € R, Zyx;’ = (¢) if and only if
Pn(E0,m0) (00 (X)), E(0,p0) (v (x1")) = 7n. It is therefore straightforward to make an
induction argument on the spike number, starting from tliesti spike ink;’ to show that
x1’ has a spike at soméiff x»’ has a spike at — ¢ and therefore we have,’ = o+ (x1”).
Similarly, using a straightforward induction argument @pth, one can show that for every
neuron in the network, its output in the second case is a $iniited version of the one in
the first case. We therefore havéo(x)) = o+ (7T (x)).
T(-) is resettable.Let T andp be upper bounds on those parameters over all the neurons in
N.If T < p, then set the value af = p. The claim is that fol = d(Y + p) + p, T(:) is
W-resettable, wheré is the depth of\/. Consider arbitrary € F,,, so thaty has a gap in
the interval(t,t + d(Y + p) + p), for somet € R. As before, letV;, for 1 < i < d, be the set
of neurons in\ of depthi. Each neuromN € N receives all its inputs from spike-trains in
x- Therefore by Axiom (3) of the neuron, it is straightforwaodsee that the output of has
agapintheintervalt, t+ (d—1)(Y+p)+2p). By similar arguments, we have that output of
each neurol € N;, for1 <i < dhasagapintheintervél, t+ (d—i) (Y +p)+ (i+1)p).
Thus, in particular, the output neuron has a gap in the intétyt + (d+ 1)p). Sinced > 1,
the Gap Lemma applies, and at time instattie output of the output neuron depends on
spikes in the intervalt,t + (T + p)) of its inputs. All inputs to the output neuron have
a gap in the interva(t,t + (" + p) + dp), since they have depth at mast— 1). Since
those inputs have a gap in the interyak (T + p),t + (T + p) + dp), for d > 2, the
Gap Lemma applies and the output neuron’s output at timarnhstlepends on outputs of
the “penultimate layer” in the intervdk,t + 2(7 + p)). Therefore by similar arguments,
the output of the output neuron at time instardt most depends on inputs frognin the
interval (t,t+d(Y + p)). That s to say thal (x’), for everyy’ identical toy in the interval
(—oo,t + d(T + p)), has the same output &5 x) in the interval[t, —oo), following the
corollary to the Gap Lemma. In particula, _ . ; x is one suchy’. We therefore have
E(co0,1T(X) = T(E(—00,51x) Upon noting thatt_ oo 17 (Z(—c0,1X) = T(E(—00,1X);
since7 (-) has no spikes iift, oo). Thus, 7 (+) is resettable.

O

Proof of Proposition 2.Assume that the hypothesis in the proposition is true7LetF,, —
S beW-Resettable for somd@” ¢ RT.

We first show a construction for the neur@n prove that it obeys all the axioms of
the abstract model and then show that it has the propertyfdhaveryx € Fm, T(x) is
consistent with7;(x) U x with respect td.

We first construct the neuro®{ag, Yo, po, 70, Ao, mo, Po : S(S?TO) X S8(0,p0) —
Mo, 70]). Setag = a andpg,70 € RT, Ao € R~ arbitrarily with po > ag. Set
Yo = max{U,W} andmg = m + 1. The functionP, : 8(78,01@) X 8(0,00) = [A0,70]
is constructed as follows.

Foryx' € S(’gfro) andxo’ € S, ), S€tPo(x’,x0") = 70 and Py (X', ¢) = o if and
only if there existsy € Fm, andt € R so that=; 7 (x) = (t) andx’ = S 1) (ot (T5(x) U
X)) andxo’ = = p0)(a(T(x))). Everywhere else, the value of this function is set to zero.

Next, we show it obeys all of the axioms of the single neuron.

We prove thab satisfies Axiom (1) by showing that its contrapositive istruety’ €

SZ’SOTO) andxo’ € (g ,,) be arbitrary so thaPp (x', x0") = 70. If xo’ = ¢, Axiom (1) is

immediately satisfied. Thus, consider the case whén= (z} 23 ... 2k ). Thenz} > a,
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otherwise, from the construction &% (-), it is immediate that there existsyae Fn, with

Tx) ¢S.

Next, we prove tha satisfies Axiom (2). Ley’ € Sggf’ro) andxo’ € 8o, ) be arbi-
trary. If Po(x’,x0") = 70, then it is immediate from the construction tig(x’, ¢) = 7o.
On the contrary, iP5 (X', x0") # 7o, from the construction o, we havePo (', x0") = 0.
Then the “tie-breaker” condition in the hypothesis implieat Py (', ¢) # T0. Therefore,
Po(x',¢) = 0. Thus, Axiom (2) is satisfied either way.

With Axiom (3), we wish to showP, (¢™ 1, ¢) = 0. Here, we will show thaPg (x LI
@™, x0") = 0, forall x; € S 1, andxo’ € So,,,) Which implies the required result.
Assume, for the sake of contradiction, that there exists & S(O’TO) andxq’ € S(OM),
so thatPy (x; U 9™, x0’) = 0. From the construction @, this implies that there exists
X € Fm andt € R so that=;7 (x) = (t) and =g 1,)(ot(x)) = ¢™. Thatis,x has a
gap in the intervalt, ¢ + W), sinceYy > W. SinceT : Fp, — S is causal, time-invariant
andW-resettable, by Corollary 3 (stated and proved later in tiesgnt write-up), we have
Z+T(x) = ¢, which is a contradiction. Therefore, we hakg(x, L ¢™,x%¢') # 170 and
by construction 0D, Po(x; U ¢™,xo") = 0, for all x; € Si r,) andxo’ € Sjg ). This
implies Py (¢™ 1, ¢) = 0, satisfying Axiom (3).

Finally, we wish to show that for every € F,,, T(x) is consistent with7;(x) U x
with respect t00. That is, we wish to show that for evegy € Fy,, and for everyt € R,
Zo0¢(T(x)) = (0) if and only if Po(Z(0,1,) (a:(T3(x) U X)): Z(0,p0) (0:(T(X)))) = To0.
Consider arbitrary € F,, andt € R. If Z50+(T (x)) = (0), then it is immediate from the
construction o that Po (Z (9,7, (0(T3(x) Ux))> Z(0,p0) (0t (T(X)))) = 0. To prove the
converse, suppos€oo: (7 (x)) # (0). Then, from the contrapositive of the “tie-breaker
condition, it follows that for ally € Fy, and for alli € R with =g 1,y (o7(T3(x) U X)) =
Z0,70) (0t (T3(x) U x)), we haveZoo;(T (X)) = Zoot(T(x)) # (0). Therefore, from the
construction, we haveo (£ 0,1,) (0(73(x) U X)), Z(0,00) (0(T(x)))) # To0-

O

Proof of Proposition 3.Assume that the hypothesis in the proposition is true7LetF,, —
S beW’-Resettable for som@’ € R, SetW = max{WW’, 12a}. One readily verifies that
T : Fm — S is alsoWW-resettable.

We first show a construction for the neurdnprove that it obeys all the axioms and
then show that it has the property that there exisis @ R so that for allt;, t> € R and
X1, X2 € Fm With Zo0t, (T (x1)) # Z00t, (T (x2)), we haveE g vy (o, (Tr(x1) Ux1)) #
S(o,v) (o1, (Ty(x2) U x2)), whereT; : Fr — S is such that for eacly € Fin, Ti(x) is
consistent withy with respect tal.

We first construct the neUrQﬂaJ,TJ,pJ, Ty, Ay, my, Pyt SEB,JTJ) X S(O,pJ) — [AJ,TJ]).
Seta; = a. Letp,q,r € RT, with® p = 8a,¢ = 2a andr = a. SetYy = p+q+r+ W,
py = 2p—randm; = m. Letr; € R, \; € R~ be chosen arbitrarily. The function

P, :Sg)“m X 8(0,py) =+ [As, 73] is constructed as follows.
Fory € S(gjm a_ndxo € S(0,p,)1 SELPy(x, %0) = 7} qnd_PJ(X, ¢) = 7 if and only if
one of the following is true; everywhere else, the functi®set to zero.

1. E(p,p—i—W)X = o™, EpX # o™ andE(O,p]XO = ¢.
2. Z(o,ptqX0 = (t), Whereq < t < (¢ +r) and(t — q) = (0, =g pjot(x))- Moreover,

Eltapitprw)X = @ andZ g x # @™

3 The choice of values fop, ¢, » and W was made so as to satisfy the following inequalities, which we
will need in the proofp < W, p > 2(¢q + r) andgq > a.
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3 Z(0,2p—(gr1X0 = {ta,ty) with (p — (¢ + 7)) <tz < (p—gq) <ty = p. Also, for all
t' € [0,p], Er o 4wyx # ™.

4. Z(o,2p—rX0 = (tta,ty) Withg <t < (¢+7) < (p—7) <ta <p<ty=p+tand
(t—q) = e((ty—tu—q), Z(0,pjot(x)). Furthermore, for all’ € [0, p+t], 5y 4 wix #
.

wheree : [0,7) x S'(’ng] — [0,7) is as defined below.

For convenience, we define an operaﬁ)r: [0,1) — [0,1), for j,k € Z*, that con-
structs a new number obtained by concatenating e#érgigit of a given number, where
i = j mod k. More formally, forz € [0,1), .5 (z) = X2, (([z x 10770~ DF | —10[2 x
109+E=Dk=1 ) 5107,

Also, we define another operatgg : [0,1)* — [0,1), for k € Z* which “inter-
leaves” the digits of: given numbers in order to produce a new number. More formally
for zg, z1,. .. , Tp—1 € [O, 1), Ck(CCO:l’la - :l’k—l) = EgO((ka(f—l_fJ) X 101+|-%JJ —
10[ @i 4 ) X 10L%1]) x 107041,

Let d be the largest integer so that, for all € [0,7), we haves’ x 10¢ < 1.
Fora' e [0,r), letz = &' x 10% For x € Sp’), definé e(a/,x) = 107 x

Cmy(e0(e7 (), I11(X)), c0 (13" (), I2(X)); - - - s €0 (vm3 (%), Im, (X)), Wherezg : [0, 1) x
Sw,p) — [0, 1) is as defined below.

Letn € [0,1) andx € S . Furthermore, let = :3(n) ands = (3(n). Letx =
(z',22,...,z"). We haved < k < 8, because = 8a. Also, sincep = 8r, we have
' x 1071 < 1,for1 <i < k.Lets’ = Cppq(at x 10971 22 x 10971 .. 2k x 10971 ).
If c=0,thenletd’ = £ +0.09 else let’ = % + <. Finally, defineso(n, x) = ¢2(', s').

Next, we show thai satisfies all the axioms of the neuron.

It is immediate thatl satisfies Axiom (1), since all output spikes in the above traos
tion are at leas¢ milliseconds apart, ang= 2a.

We now prove thal satisfies Axiom (2). Le’ € S(’gfm andxo’ € So,,,) be arbitrary.
If Py(x’,x0") = 7, then it is immediate from the construction tHat(x’, ¢) = 7, which
satisfies Axiom (2). On the contrary,#f;(x’, xo’) # 7, from the construction of, we have
Py(x’,x0") = 0. Also, from the construction we have eithey(x’, ) = 0 or Py(x/, ¢) =
7). Axiom (2) is satisfied in either case.

Also, J satisfies Axiom (3), since it is clear thgat= ¢™ does not satisfy any of the
conditions enumerated above. We therefore ay@™, ¢) = 0.

Finally, we show that there exists @ < RT so that for allt;,t2 € R and
X1, X2 € Fm With Zoot, (T(x1)) # Zo00t,(T(x2)), we haveZ g vy (ot, (T3(x1) U
x1)) # Zo,u)(ot, (Ti(x2) U x2)), whereT; : Fn — S such that for eachy <
Fm, Ti(x) is consistent withy with respect toJ. Let U = p + q + r + W. As-
sume Zoo¢, (T(x1)) # Zoot, (T (x2)). Now, SUppose=(g o w)or, (x1) = @™, then
clearly = orwyot,(x2) # ¢, otherwiseT(-) produces no spike at timess and
t2 respectively on receiving; and x2, by Corollary 3. As a result= o iyot, (x1) #
Z(0,u)0t, (x2), which implies the required result. Otherwise, from Pratas 5, it fol-
lows that there exist,Va € RT so thatZ v,1(0r, (x1)) # Z(0,v5](0t,(x2))- If
Zo,m (ot (x1)) # Zo,v) (0t (x2)), it is immediate thatE o ) (o, (Tr(x1) U x1)) #
Z0,u)(0t,(T3(x2) U x2)). It therefore suffices to prove that &y v,i(ot, (x1)) #
Ew,ve) (o1, (x2)) thenZ g vy (o1, Ty(x1)) # Z(o,v) (01, T3(x2)). Proposition 5 implies that

4 Recall that theprojection operator for spike-train ensembleglefined ad7; (x) = x;, for1 < i < m,
wherex = (x1,X2,...,Xm).
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Ewvi,viewy (ot (x1)) = @™ and =y, (o1, (x1)) # ¢™. Therefore, by Case (1) of the con-
struction, =y, _pyot, T3(x1) = (Vi — p). Moreover, since Proposition 5 implies that for
all #; € [0,11), Ew, v 4wy (0t (x1)) # ¢™, from Case (3) of the construction, we have
that for everyk € Z* with Vi — kp > 0, Sy, —gpyor, To(x1) = (Vi — kp). Letky be
the smallest positive integer, so tHat— k1p < U. From the previous arguments, we have
EWi—kpot Ti(x1) = (Vi — kip). Also, it is easy to see thaty — kip > (¢ + 7). Let

ko be similarly defined with respect tg; so that='y, g, 01, T3(x2) = (V2 — kap) and

Vo — kop < U. Now, there are two cases:

1. 1f Vi — k1ip # Vo — kap, we now show thakE o 17y (a1, T3 (x1)) # E(o,0) (01, Ti(x2)),
which is the required result. Assume, without loss of gelitgréhat Vi — k1p < Vo —
kop. If these two quantities are less than- r apart, we havesq 7y (o, T3(x1)) #
Z0,0)(0t, T3(x2)), because by Case (4) of the constructi@iy:) has a spike in the
interval (Vi — kip — (¢ +r), Vi — k1p — ¢q] and by Case (3) of the construction,(x2)
has no spike in the intervélz — kap, Vo — kap+p— (¢ +r)). In other words, the spike
following the one at/; —k1pin 7;(x1) has no counterpart i (x2). On the other hand,
if they are less thap apart but at most — r apart, by similar arguments, it is easy to
show that the spike at; — k2p in T3(x2) has no counterpart ifi; (x1). Finally, if they
are at leasp apart, therks does not satisfy the property that it is the smallest pasitiv
integer, so that> — kap < U, which is a contradiction.

2. On the contrary, consider the case when- k1p = V2 — kap. We have two cases:

(a) Supposeé; # ko. Lett] be the largest positive integer so it o, T(x1) = )
andt; < Vi — kip. From Case (4) of the construction, we have that (V1 —
kip) —t} < q+ r. Lett, be defined likewise, with respect t@. Further, let
ny = (Vi — kip) —t — qandny = (Vo — kap) — th — g andny = n} x 104
andny = nj x 10%. Sincek; # ko, it is straightforward to verify that for alf

with 1 < j <my, 3 (] (n1)) # 1(:" (n2)), for the former number hasin the

(k1 + 1)*" decimal place, while the latter number does in the + 1)*" decimal
place and not in thék: + 1)”L decimal place sincé; # ks. Thereforen, # na
and consequently # t5 which gives usS o 1) (o, 75(x1)) # Z0,0) (01, T3(x2)),
which is the required result.

(b) On the other hand, suppokge = k2. Again, we have two cases:

i. Suppose, there exists awith 1 < j < m; and ak’ < ki, so that
EWi—k'p,vi—(k'—1)p) 11 (01, (x1)) has a different number of spikes when com-
pared to= v, _ip, vy — (k' —1)p I1j (01, (x2))- L€tN1, 12 be defined as before. It
is straightforward to verify thaff (] (n1)) # «1(:]" (n2)), because they dif-
fer in the (k; — k' 4+ 1)!" decimal placé. Therefore,= g 1) (ot, T3(x1)) #
Z0,0) (01, Ty(x2))-

ii. Now consider the case where for allwith 1 < j < m; and k¥’ <
k1, we have = (v, _pp v, —1)p) i (01, (x1)) have the same number of
spikes when compared & v, _i/p, v, — (k' —1)p] 11 (01, (x2)). Now, by hy-
pothesis, we haves(y v, (a1, (x1)) # Zju,v)(ot,(x2)). Therefore there
must exist al < j < mj and k¥’ < ki1, so that there is a point in
time where one of the spike-trainS v, _ip v, —(k'—1)p) ILj (1, (x1)) and
E(Va—k'p,va—(k'—1)p I (o1, (x2)) has a spike, while the other does not. tet

5 k, exists becaust > p.

6 Which inn; andns encodes the number of spikes in the interfdl — k'p, Vo — (K’ — 1)p] on the
jt" spike-train ofy1 andys respectively.
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be the latest time instant at which this is so. Also, assuntieowt loss of gener-
ality that= v, _i/p. v, -k —1)p 115 (01, (x1)) = (z*, ..., 29) has a spike at time
instantt’ while Z v, /v, — (k7 —1)p 11 (0, (x2) ) does not. Lep be the num-
ber so that’ = 2P. Letn1, no be defined as before. Also, for eaklwith 1 <
h < ki, letr;, be the number of spikes B8y, _np, v, — (h—1)p) L (01, (x1))-
Eachr;, can be determined from;. Then, it is straightforward to verifythat
DA L:::: .. .L;}L%L;ﬂJnl # 1 L;f:j .. .L;iL%L;ﬂJng. Thereforen, # ne and
it follows that

S0, (0, Ti(x1)) # Z(o,v) (01, Ti(x2))-

Some auxiliary propositions used in the proofs of Proposii2 and 3

Proposition 4. If T : F,, — S is time-invariant, therv (¢™) = ¢.

Proof. For the sake of contradiction, suppogés™) = xo, Wherexo # ¢. That is, there
exists at € R with Zyxo = (t). Letd < a. Clearly,os5(¢™) = ¢™ € Fmn. SinceT :
Fm — S is time-invariant, 7 (o5(¢™)) = os(T(¢™)) = o5(x0). Now, o5(x0) # %o
sinceZ;_sy05(x0) = (t — &) whereas=;_s)xo = ¢, for otherwisexo ¢ S. This is a
contradiction. Therefore] (¢™) = ¢.

O

Corollary 3. Let T : F»n — S be causal, time-invariant an#l’-resettable, for some
W € R*.If x € Fin, has a gap in the intervalt, t + W), then=,7(x) = ¢.

Proof. Assume the hypothesis of the above statement. One readiy/that=;7 (x) =
Elt,00) 5 (— 00,1 T (x)- Now, sincey has a gap in the intervdt, ¢ + W) andT : Fp — S
is W-resettable, we have(; o) = (oo, T (X) = Zt,00)T (5 (=0, x)- Further, by defini-
tion, 24 00) E(—00,)X = Z(t,00)@""- Therefore, sincg : 7, — S is causal, it follows
that = ooy T(Z(—00,1X) = Z[t,00) T (9™) = ¢, with the last equality following from the
previous proposition. Thus, we ha®&T () = ¢. O

Proposition 5. Let 7 : F,, — S be causal, time-invariant antd’’-resettable, for some
W' € RT. Then for alw € Rt with W > W/, ¢t1,t2 € R and x1,x2 € Fm With
o001, (T(x1)) # Z00t, (T (x2)), WhereZ o1wyor, (x1) # @™ # Z(0,04w)0t> (X2),
there exist’;, V2 € RT so that the following are true.

1. Z,w) (o (x1)) # Z0,v5) (0t (x2))

2. Zvy 4wy (o (x1)) = @™, Ev; (01, (x1)) # @™ and =y, v, 1w (01, (x2)) = @™,
EV2 (Utz (X2)) # o™

3. Forallty € [0,V1), S 41 4w (ot (x1)) # ¢™ and for allt; € [0, V2),
ity 14wy (0t (x2)) # ™.

Proof. SinceT : Fn — S is causal, we hav&],, .y\7(x1) = Z[t,,00)T (Z(t1,00)X1)-
This impliesoy, (5, ,00) T (x1)) = atl(E[thoo)T(E_(thoo)m)) which_gives us
Z10,00)01: (T (X1)) = Z(0,00) 0, (T(Z(1,,00)X1))- SINCET : Fin — S'is

time-invariant anar¢, (=1, oo)X1) = Z(0,00)0t: (X1) € Fm, We have

7 The expression on either side of the inequality is a real nuhia¢ encodes for thg” spike time in the
spike—trainsE(Vl —k/p, V1 — (k' —1)p] Hj (Ut1 (Xl)) andE(Vz —k'p,Vo— (k' —1)p] Hj (Ci'zg2 (XQ)) respectively.
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Z10,00) 741 (T (11,00 X1)) = Z0,00) T (5(0,00)91: (x1))- In short,

Z10,00)01: (T (X1)) = E[0,00) T (Z(0,00) 71 (x1)) Which implies

Zoot, (T(x1)) = Z0T(E(0,00)0t: (1)) Similarly,  Zoot, (T (x2)) =
20T (E(0,00)0t,(x2)).  Therefore, it follows from the hypothesis that
Z0T (Z(0,00) (01, (x1))) # Z0T (E(0,00) (022 (Xx2)))-

Let Vi,Va € RT be the smallest positive real numbers so tﬁ%,oo)(atl(xﬂ)
and Z(g,o0)(0t,(x2)) have gaps in the interval$Vi, Vi + W) and (Va, V2 + W)
respectively. That suclyy, V» exist follows from the fact thati,x2 € Fm. Since,
T : Fm — S is W -resettable, it is alsd¥V-resettable fori’v’ > W’. It therefore
follows that = v,17(Z(0,00) (01, (x1))) = T(Z(—00,14]1Z(0,00) (01, (x1))) Which
equals T (Z(,v,1(ot, (x1))). This implies that Z0=(_ o v,1T (5(0,00) (01, (x1))) =

Z0T(E0,v) (Utl(xl))) due to which we have Z07 (50,00 (0t (x1)) =

S0T (Z(0,v41(0t, (x1))). Likewise,

ZoT(= (Ooo)(atz(x ) = 20T (Z0,vy) (01, (x2))).  We therefore  have
20T (E(0,v)(0t, (x1))) # 20T (Z(0,vs)(01,(x2))).  This readily implies

:(0 (ot (x1))  #  Z,w)(ot,(x2)) and, from the construction, it follows that
Em, V1+W)(Ut1(X1)) = ¢", v (o1, (x1)) # @™ and Sy, v, 4w (01, (x2)) = o™,
Zy, (o1, (x2)) # ¢™, for otherwiseV; or Vo would not be the smallest choice of
numbers with the said property. Furthermore, for the sarasams, for alt; < [0,71),
S 4wy (ot (x1)) # @™ and for allt, € [0,V2), Sy 14w (01, (x2)) # @™ -
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